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1. Linear logistic regression

(a) The joint density is

f(x;α, β) =
∏
i

e(α+βdi)xi

1 + eα+βdi
=

eα
∑

i
xi+β

∑
i
dixi∏

i(1 + eα+βdi)

= eα
∑

i
xi+β

∑
i
dixi−

∑
i
log(1+eα+βdi ).

This has the form of a canonical exponential family with canonical suf-
ficient statistic t(X) = (

∑
i Xi,

∑
i Xidi) and log-normalizing constant

c(α, β) =
∑

i

log(1 + eα+βdi).

(b) The likelihood equation for the parameters α and β is determined by
equating the canonical statistics to their expectations. We have

E(Xi) = pi =
eα+βdi

1 + eα+βdi

so the likelihood equations are

∑
i

xi = E(
∑

i

Xi) =
∑

i

eα+βdi

1 + eα+βdi
,
∑

i

xidi = E(
∑

i

Xidi) =
∑

i

die
α+βdi

1 + eα+βdi
.

Expressing this in terms of pi = E(Xi) yields the alternative expressions∑
i

xi =
∑

i

pi,
∑

i

xidi =
∑

i

pidi.

(c) In the case where it is known that α = 0 we also have a canonical
exponential family with t2(X) =

∑
i Xidi as canonical statistic. The

Fisher information for β is found by differentiating the log-normalizing
constant c(0, β) twice to yield

i(β) =
∑

i

d2
i e

βdi − (die
βdi)2

(1 + eβdi)2
=
∑

i

d2
i pi(1− pi) = V(

∑
i

Xidi)

and the asymptotic variance of β̂ is 1/i(β).

(d) The iterative step for Fisher’s scoring method in the case where α = 0
is known is

β ← β +
∑

i(xi − pi)di∑
i d

2
i pi(1− pi)

.
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(e) The iterative step for the Newton-Raphson method, when α = 0 is
known is identical to that in the method of scoring since this is a canon-
ical exponential family.

(f) To write the iterative step for Fisher’s method of scoring in the case
where both α and β are unknown we need the full information ma-
trix, obtained by differentiation of the log-normalizing constant c(α, β)
or—whichever is easier— by calculating the covariance matrix of the
canonical statistic. With the short notation introduced earlier, this
gives

i(α, β) =

(
V(
∑

i Xi) Cov(
∑

i Xi,
∑

i diXi)
Cov(

∑
i Xi,

∑
i diXi) V(

∑
i diXi)

)

=

( ∑
i V(Xi)

∑
i Cov(Xi, diXi)∑

i Cov(Xi, diXi)
∑

i V(diXi)

)

=

( ∑
i pi(1− pi)

∑
i dipi(1− pi)∑

i dipi(1− pi)
∑

i d
2
i pi(1− pi)

)
.

(g) The asymptotic covariance matrix of (α̂, β̂) is given by the inverse of
the information matrix calculated above. No specific simplication is
obtained.

2. Deconvolution of Poisson signals.

(a) The joint density is

f(y;α, β) =
∏
i

(β + αdi)yi

yi!
e−β−αdi .

For β = 1 we get

f(y;α) =
∏
i

(1 + αdi)yi

yi!
e−1−αdi .

This is not a canonical exponential family. If we try to give it expo-
nential form we could write

f(y;α) =

(∏
i

1
yi!

)
e
∑

i
yi log(1+αdi)−n−α

∑
i
di ,

but log(1 + αdi) is not a linear function of any transformation of α.

(b) The score statistic for α is

S(α) =
∑

i

Yidi

1 + αdi
−
∑

i

di =
∑

i

di(Yi − 1− αdi)
1 + αdi

.
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(c) The Fisher information for α is found by differentiating yet another
time and taking expectations

j(α) = −S′(α) =
∑

i

Yid
2
i

(1 + αdi)2
.

Taking expectations yields

i(α) =
∑

i

d2
i

1 + αdi
.

(d) The iterative step for solving the likelihood equation by the Newton–
Raphson method is

α← α +
S(α)
j(α)

= α +

∑
i

di(Yi−1−αdi)
1+αdi∑

i
Yid2

i
(1+αdi)2

.

(e) The iterative step for solving the likelihood equation by Fisher’s scoring
method replaces the observed information with the expected

α← α +
S(α)
i(α)

= α +

∑
i

di(Yi−1−αdi)
1+αdi∑

i
d2

i
(1+αdi)

.

(f) For complete data the likelihood function becomes

f(b, x;α) =
∏
i

1
bi!

e−n
∏
i

(αdi)xi

xi!
e−αdi = h(b, x, d)elog α

∑
i
Xi−α

∑
i
di .

This is a linear exponential family with canonical parameter θ = log α
and the MLE of α is thus found by equating the canonical statistic to
its expectation, i.e.

∑
i

xi =
∑

i

αdi; α̂ =
∑

i xi∑
i di

. (1)

(g) The complete data log-likelihood is (ignoring an additive constant)

log L(α;X, B) = log α
∑

i

Xi − α
∑

i

di.

The E-step of the EM algorithm finds the conditional expectation of
this given the observed data, i.e.

E{log L(α;X, B) |Y } = log α
∑

i

E{Xi |Y }−α
∑

i

di = log α
∑

i

x∗i−α
∑

di
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where x∗i = E(Xi |Yi). Conditionally on Yi, Xi follows a binomial
distribution with parameters (Yi, pi) where

pi =
E(Xi)
E(Yi)

=
αdi

1 + αdi

hence
x∗i =

αYidi

1 + αdi
.

(h) The E-step calculates x∗i as above, thus imputing the unobserved values
of the radioactive emissions from the source.
The M-step calculates the MLE by replacing xi by x∗i in (1), i.e. updates
α as

α←
∑

i x
∗
i∑

i di
.

(i) If the background intensity β is unknown as well, the complete data
log-likelihood becomes

log L(α, β;X, B) = log β
∑

i

Bi − nβ + log α
∑

i

Xi − α
∑

i

di.

Thus for the E-step we should calculate

x∗i =
αYidi

β + αdi
, b∗i = Yi − x∗i

and then update (α, β) as

α←
∑

i x
∗
i∑

i di
, β ←

∑
i b

∗
i

n
.

Steffen L. Lauritzen, University of Oxford April 4, 2005
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