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1. Linear logistic regression
(a) The joint density is
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This has the form of a canonical exponential family with canonical suf-
ficient statistic ¢(X) = (3; X, >.; Xid;) and log-normalizing constant
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(b) The likelihood equation for the parameters o and  is determined by
equating the canonical statistics to their expectations. We have

6()é+ﬂdi
BUX) =i = T cavpa
so the likelihood equations are
e t0d; dieaJrﬁdi
in = E(Z X’L) = Z 1+ cotpBd;’ ledl = E(Z del) = Z 1+ ea+pBd;
7 (2 (2 (2 (2 (2

Expressing this in terms of p; = E(X;) yields the alternative expressions
owi=Y pi Y widi =Y pids.

(c) In the case where it is known that o = 0 we also have a canonical
exponential family with t3(X) = Y, X;d; as canonical statistic. The
Fisher information for 3 is found by differentiating the log-normalizing
constant ¢(0, 3) twice to yield
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and the asymptotic variance of 3 is 1/i(5).

(d) The iterative step for Fisher’s scoring method in the case where o = 0

is known is
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(e) The iterative step for the Newton-Raphson method, when o = 0 is
known is identical to that in the method of scoring since this is a canon-
ical exponential family.

(f) To write the iterative step for Fisher’s method of scoring in the case
where both o« and 3 are unknown we need the full information ma-
trix, obtained by differentiation of the log-normalizing constant ¢(«, [3)
or—whichever is easier— by calculating the covariance matrix of the
canonical statistic. With the short notation introduced earlier, this
gives
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(g) The asymptotic covariance matrix of (&, 3) is given by the inverse of
the information matrix calculated above. No specific simplication is
obtained.

2. Deconvolution of Poisson signals.

(a) The joint density is
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For 8 =1 we get
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This is not a canonical exponential family. If we try to give it expo-
nential form we could write
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but log(1 + ad;) is not a linear function of any transformation of «.

(b) The score statistic for a is
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The Fisher information for « is found by differentiating yet another
time and taking expectations
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Taking expectations yields
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The iterative step for solving the likelihood equation by the Newton—
Raphson method is
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The iterative step for solving the likelihood equation by Fisher’s scoring
method replaces the observed information with the expected
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For complete data the likelihood function becomes
f(byz;a) = H ie_"l_[

This is a linear exponential family with canonical parameter 0 = log «
and the MLE of « is thus found by equating the canonical statistic to
its expectation, i.e.
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The complete data log-likelihood is (ignoring an additive constant)

log L(a; X, B) =loga )  X; —a ) _d;.
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The E-step of the EM algorithm finds the conditional expectation of
this given the observed data, i.e.
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where 7 = E(X;|Y;). Conditionally on Y;, X; follows a binomial
distribution with parameters (Y;, p;) where
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The E-step calculates x as above, thus imputing the unobserved values
of the radioactive emissions from the source.

The M-step calculates the MLE by replacing z; by 7 in (1), i.e. updates
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If the background intensity (§ is unknown as well, the complete data
log-likelihood becomes

log L(a, B; X, B) =log BY_Bi —nf+logay X;—a) d;.
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Thus for the E-step we should calculate
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and then update («, 3) as
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