1. Linear logistic regression
(a) The joint density is

$$
\begin{aligned}
f(x ; \alpha, \beta) & =\prod_{i} \frac{e^{\left(\alpha+\beta d_{i}\right) x_{i}}}{1+e^{\alpha+\beta d_{i}}}=\frac{e^{\alpha \sum_{i} x_{i}+\beta \sum_{i} d_{i} x_{i}}}{\prod_{i}\left(1+e^{\alpha+\beta d_{i}}\right)} \\
& =e^{\alpha \sum_{i} x_{i}+\beta \sum_{i} d_{i} x_{i}-\sum_{i} \log \left(1+e^{\left.\alpha+\beta d_{i}\right)}\right.}
\end{aligned}
$$

This has the form of a canonical exponential family with canonical sufficient statistic $t(X)=\left(\sum_{i} X_{i}, \sum_{i} X_{i} d_{i}\right)$ and log-normalizing constant

$$
c(\alpha, \beta)=\sum_{i} \log \left(1+e^{\alpha+\beta d_{i}}\right)
$$

(b) The likelihood equation for the parameters α and β is determined by equating the canonical statistics to their expectations. We have

$$
\mathbf{E}\left(X_{i}\right)=p_{i}=\frac{e^{\alpha+\beta d_{i}}}{1+e^{\alpha+\beta d_{i}}}
$$

so the likelihood equations are

$$
\sum_{i} x_{i}=\mathbf{E}\left(\sum_{i} X_{i}\right)=\sum_{i} \frac{e^{\alpha+\beta d_{i}}}{1+e^{\alpha+\beta d_{i}}}, \quad \sum_{i} x_{i} d_{i}=\mathbf{E}\left(\sum_{i} X_{i} d_{i}\right)=\sum_{i} \frac{d_{i} e^{\alpha+\beta d_{i}}}{1+e^{\alpha+\beta d_{i}}}
$$

Expressing this in terms of $p_{i}=\mathbf{E}\left(X_{i}\right)$ yields the alternative expressions

$$
\sum_{i} x_{i}=\sum_{i} p_{i}, \quad \sum_{i} x_{i} d_{i}=\sum_{i} p_{i} d_{i} .
$$

(c) In the case where it is known that $\alpha=0$ we also have a canonical exponential family with $t_{2}(X)=\sum_{i} X_{i} d_{i}$ as canonical statistic. The Fisher information for β is found by differentiating the log-normalizing constant $c(0, \beta)$ twice to yield

$$
i(\beta)=\sum_{i} \frac{d_{i}^{2} e^{\beta d_{i}}-\left(d_{i} e^{\beta d_{i}}\right)^{2}}{\left(1+e^{\beta d_{i}}\right)^{2}}=\sum_{i} d_{i}^{2} p_{i}\left(1-p_{i}\right)=\mathbf{V}\left(\sum_{i} X_{i} d_{i}\right)
$$

and the asymptotic variance of $\hat{\beta}$ is $1 / i(\beta)$.
(d) The iterative step for Fisher's scoring method in the case where $\alpha=0$ is known is

$$
\beta \leftarrow \beta+\frac{\sum_{i}\left(x_{i}-p_{i}\right) d_{i}}{\sum_{i} d_{i}^{2} p_{i}\left(1-p_{i}\right)}
$$

(e) The iterative step for the Newton-Raphson method, when $\alpha=0$ is known is identical to that in the method of scoring since this is a canonical exponential family.
(f) To write the iterative step for Fisher's method of scoring in the case where both α and β are unknown we need the full information matrix, obtained by differentiation of the log-normalizing constant $c(\alpha, \beta)$ or-whichever is easier-by calculating the covariance matrix of the canonical statistic. With the short notation introduced earlier, this gives

$$
\begin{aligned}
i(\alpha, \beta) & =\left(\begin{array}{cc}
\mathbf{V}\left(\sum_{i} X_{i}\right) & \operatorname{Cov}\left(\sum_{i} X_{i}, \sum_{i} d_{i} X_{i}\right) \\
\operatorname{Cov}\left(\sum_{i} X_{i}, \sum_{i} d_{i} X_{i}\right) & \mathbf{V}\left(\sum_{i} d_{i} X_{i}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sum_{i} \mathbf{V}\left(X_{i}\right) & \sum_{i} \operatorname{Cov}\left(X_{i}, d_{i} X_{i}\right) \\
\sum_{i} \operatorname{Cov}\left(X_{i}, d_{i} X_{i}\right) & \sum_{i} \mathbf{V}\left(d_{i} X_{i}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sum_{i} p_{i}\left(1-p_{i}\right) & \sum_{i} d_{i} p_{i}\left(1-p_{i}\right) \\
\sum_{i} d_{i} p_{i}\left(1-p_{i}\right) & \sum_{i} d_{i}^{2} p_{i}\left(1-p_{i}\right)
\end{array}\right) .
\end{aligned}
$$

(g) The asymptotic covariance matrix of $(\hat{\alpha}, \hat{\beta})$ is given by the inverse of the information matrix calculated above. No specific simplication is obtained.
2. Deconvolution of Poisson signals.
(a) The joint density is

$$
f(y ; \alpha, \beta)=\prod_{i} \frac{\left(\beta+\alpha d_{i}\right)^{y_{i}}}{y_{i}!} e^{-\beta-\alpha d_{i}} .
$$

For $\beta=1$ we get

$$
f(y ; \alpha)=\prod_{i} \frac{\left(1+\alpha d_{i}\right)^{y_{i}}}{y_{i}!} e^{-1-\alpha d_{i}} .
$$

This is not a canonical exponential family. If we try to give it exponential form we could write

$$
f(y ; \alpha)=\left(\prod_{i} \frac{1}{y_{i}!}\right) e^{\sum_{i} y_{i} \log \left(1+\alpha d_{i}\right)-n-\alpha \sum_{i} d_{i}}
$$

but $\log \left(1+\alpha d_{i}\right)$ is not a linear function of any transformation of α.
(b) The score statistic for α is

$$
S(\alpha)=\sum_{i} \frac{Y_{i} d_{i}}{1+\alpha d_{i}}-\sum_{i} d_{i}=\sum_{i} \frac{d_{i}\left(Y_{i}-1-\alpha d_{i}\right)}{1+\alpha d_{i}} .
$$

(c) The Fisher information for α is found by differentiating yet another time and taking expectations

$$
j(\alpha)=-S^{\prime}(\alpha)=\sum_{i} \frac{Y_{i} d_{i}^{2}}{\left(1+\alpha d_{i}\right)^{2}} .
$$

Taking expectations yields

$$
i(\alpha)=\sum_{i} \frac{d_{i}^{2}}{1+\alpha d_{i}} .
$$

(d) The iterative step for solving the likelihood equation by the NewtonRaphson method is

$$
\alpha \leftarrow \alpha+\frac{S(\alpha)}{j(\alpha)}=\alpha+\frac{\sum_{i} \frac{d_{i}\left(Y_{i}-1-\alpha d_{i}\right)}{1+\alpha d_{i}}}{\sum_{i} \frac{Y_{i} d_{i}^{2}}{\left(1+\alpha d_{i}\right)^{2}}} .
$$

(e) The iterative step for solving the likelihood equation by Fisher's scoring method replaces the observed information with the expected

$$
\alpha \leftarrow \alpha+\frac{S(\alpha)}{i(\alpha)}=\alpha+\frac{\sum_{i} \frac{d_{i}\left(Y_{i}-1-\alpha d_{i}\right)}{1+\alpha d_{i}}}{\sum_{i} \frac{d_{i}^{2}}{\left(1+\alpha d_{i}\right)}} .
$$

(f) For complete data the likelihood function becomes

$$
f(b, x ; \alpha)=\prod_{i} \frac{1}{b_{i}!} e^{-n} \prod_{i} \frac{\left(\alpha d_{i}\right)^{x_{i}}}{x_{i}!} e^{-\alpha d_{i}}=h(b, x, d) e^{\log \alpha \sum_{i} x_{i}-\alpha \sum_{i} d_{i}} .
$$

This is a linear exponential family with canonical parameter $\theta=\log \alpha$ and the MLE of α is thus found by equating the canonical statistic to its expectation, i.e.

$$
\begin{equation*}
\sum_{i} x_{i}=\sum_{i} \alpha d_{i} ; \quad \hat{\alpha}=\frac{\sum_{i} x_{i}}{\sum_{i} d_{i}} . \tag{1}
\end{equation*}
$$

(g) The complete data log-likelihood is (ignoring an additive constant)

$$
\log L(\alpha ; X, B)=\log \alpha \sum_{i} X_{i}-\alpha \sum_{i} d_{i} .
$$

The E-step of the EM algorithm finds the conditional expectation of this given the observed data, i.e.

$$
\mathbf{E}\{\log L(\alpha ; X, B) \mid Y\}=\log \alpha \sum_{i} \mathbf{E}\left\{X_{i} \mid Y\right\}-\alpha \sum_{i} d_{i}=\log \alpha \sum_{i} x_{i}^{*}-\alpha \sum d_{i}
$$

where $x_{i}^{*}=\mathbf{E}\left(X_{i} \mid Y_{i}\right)$. Conditionally on Y_{i}, X_{i} follows a binomial distribution with parameters $\left(Y_{i}, p_{i}\right)$ where

$$
p_{i}=\frac{\mathbf{E}\left(X_{i}\right)}{\mathbf{E}\left(Y_{i}\right)}=\frac{\alpha d_{i}}{1+\alpha d_{i}}
$$

hence

$$
x_{i}^{*}=\frac{\alpha Y_{i} d_{i}}{1+\alpha d_{i}}
$$

(h) The E-step calculates x_{i}^{*} as above, thus imputing the unobserved values of the radioactive emissions from the source.
The M-step calculates the MLE by replacing x_{i} by x_{i}^{*} in (1), i.e. updates α as

$$
\alpha \leftarrow \frac{\sum_{i} x_{i}^{*}}{\sum_{i} d_{i}} .
$$

(i) If the background intensity β is unknown as well, the complete data log-likelihood becomes

$$
\log L(\alpha, \beta ; X, B)=\log \beta \sum_{i} B_{i}-n \beta+\log \alpha \sum_{i} X_{i}-\alpha \sum_{i} d_{i}
$$

Thus for the E-step we should calculate

$$
x_{i}^{*}=\frac{\alpha Y_{i} d_{i}}{\beta+\alpha d_{i}}, \quad b_{i}^{*}=Y_{i}-x_{i}^{*}
$$

and then update (α, β) as

$$
\alpha \leftarrow \frac{\sum_{i} x_{i}^{*}}{\sum_{i} d_{i}}, \quad \beta \leftarrow \frac{\sum_{i} b_{i}^{*}}{n}
$$

