1. Estimation in the Gamma distribution
(a) The asymptotic covariance matrix of $(\hat{\alpha}, \hat{\beta})$ is equal to the inverse of the Fisher information matrix for a single observation times n^{-1}.
As this family is a canonical exponential family, the information matrix is determined by differentiation of the log-normalising constant

$$
c(\alpha, \beta)=\log \Gamma(\alpha)-\alpha \log \beta
$$

and we get

$$
i(\theta)=\left(\begin{array}{cc}
\psi^{\prime}(\alpha) & -1 / \beta \\
-1 / \beta & \alpha / \beta^{2}
\end{array}\right)
$$

so taking inverses and dividing by n we get

$$
\operatorname{Cov}(\hat{\alpha}, \hat{\beta}) \stackrel{a}{=} \frac{1}{n\left\{\alpha \psi^{\prime}(\alpha)-1\right\}}\left(\begin{array}{cc}
\alpha & \beta \\
\beta & \beta^{2} \psi^{\prime}(\alpha)
\end{array}\right)
$$

where $\psi^{\prime}(\alpha)$ is the Trigamma function.
The division with n was missing in the original problem sheet.
(b) Using the delta method on the function

$$
g(\alpha, \beta)=(\alpha, \gamma)=(\alpha, \alpha / \beta)
$$

yields

$$
\frac{\partial g}{\partial \alpha}=(1,1 / \beta), \quad \frac{\partial g}{\partial \beta}=\left(0,-\alpha / \beta^{2}\right)
$$

so the delta method yields

$$
\begin{aligned}
\operatorname{Cov}(\hat{\alpha}, \hat{\gamma}) & \stackrel{a}{=} \frac{1}{n\left\{\alpha \psi^{\prime}(\alpha)-1\right\}}\left(\begin{array}{cc}
1 & 0 \\
1 / \beta & -\alpha / \beta^{2}
\end{array}\right)\left(\begin{array}{cc}
\alpha & \beta \\
\beta & \beta^{2} \psi^{\prime}(\alpha)
\end{array}\right)\left(\begin{array}{cc}
1 & 1 / \beta \\
0 & -\alpha / \beta^{2}
\end{array}\right) \\
& =\frac{1}{n}\left(\begin{array}{cc}
\frac{\alpha}{\alpha \psi^{\prime}(\alpha)-1} & 0 \\
0 & \alpha / \beta^{2}
\end{array}\right)
\end{aligned}
$$

so $\hat{\alpha}$ and $\hat{\gamma}$ are asymptotically independent.
2. Estimation in the normal distribution with known coefficient of variation.
(a) We get by differentiation of

$$
\log f\left(x_{i} ; \mu\right)=-\frac{1}{2} \log (2 \pi)-\log \mu-\frac{x_{i}^{2}}{2 \mu^{2}}+\frac{x_{i}}{\mu}-\frac{1}{2}
$$

and summing over i that

$$
S(\mu)=-\frac{n}{\mu}+\frac{\sum_{i} X_{i}^{2}}{\mu^{3}}-\frac{\sum_{i} X_{i}}{\mu^{2}}
$$

If we let $S=\sum X_{i}$ and $S S=\sum X_{i}^{2}$ this can be rewritten as

$$
S(\mu)=-\frac{n}{\mu}+\frac{S S}{\mu^{3}}-\frac{S}{\mu^{2}}
$$

(b) The likelihood equation is obtained by equating the score statistic to 0 . Doing this and multiplying with μ^{3} yields the equation

$$
n \mu^{2}+\mu S-S S=0
$$

which has exactly one positive root

$$
\hat{\mu}=\frac{-S+\sqrt{S^{2}+4 n S S}}{2 n}
$$

unless $S S=0$, which implies all X_{i} are equal to zero.
(c) We get by further differentiation that

$$
j(\mu)=-\frac{n}{\mu^{2}}+\frac{3 S S}{\mu^{4}}-\frac{2 S}{\mu^{3}}
$$

Since $\hat{\mu}$ satisfies the likelihood equation we have

$$
\frac{S}{\hat{\mu}^{2}}=\frac{S S}{\hat{\mu}^{3}}-\frac{n}{\hat{\mu}}
$$

Inserting this into the expression for $j(\hat{\mu})$ we further get

$$
j(\hat{\mu})=\frac{n}{\hat{\mu}^{2}}+\frac{S S}{\hat{\mu}^{4}}>0
$$

so the root of the likelihood equation is the unique local (and therefore global) maximum.
(d) We use that $\mathbf{E}\left(X^{2}\right)=\mathbf{V}(X)+\{\mathbf{E}(X)\}^{2}=2 \mu^{2}$ and take expectations in the expression for $j(\mu)$ to get

$$
i(\mu)=\mathbf{E}\{j(\mu)\}=-\frac{n}{\mu^{2}}+\frac{6 n \mu^{2}}{\mu^{4}}-\frac{2 n \mu}{\mu^{3}}=\frac{3 n}{\mu^{2}}
$$

The asymptotic variance of $\hat{\mu}$ is the inverse of this, thus equal to $\mu^{2} /(3 n)$.
(e) $S S D / \mu^{2}$ is distributed as $\chi^{2}(n-1)$, which is the distribution of

$$
Y=\sum_{1}^{n-1} Z_{i}
$$

where Z_{i} are i.i.d. and $Z_{i} \sim \chi^{2}(1)$. It follows that

$$
\frac{S S D}{n-1} \stackrel{\mathrm{a}}{\sim} \mathcal{N}\left\{\mu^{2}, 2 \mu^{4} / n\right\}
$$

For $g(x)=2 \sqrt{x}$ we have $g^{\prime}(x)=1 / \sqrt{x}$ so the delta method yields that

$$
2 \sqrt{S S D /(n-1)} \stackrel{a}{\sim} \mathcal{N}\left\{2 \mu, 2 \mu^{2} / n\right\}
$$

and since \bar{X} and $S S D$ are independent we further get

$$
\mathbf{V}(\tilde{\mu})=\frac{1}{9} \frac{\mu^{2}+2 \mu^{2}}{n}=\frac{\mu^{2}}{3 n}
$$

so this estimator is also asymptotically efficient.
3. Equivalent forms of the asymptotic distribution of the MLE
(a) As $\hat{\theta}$ is consistent, $\hat{\theta} \xrightarrow{P} \theta_{0}$. As i is continuous, this implies $i(\hat{\theta}) \xrightarrow{P} i\left(\theta_{0}\right)$. Since Cramér's conditions imply that

$$
\sqrt{n i\left(\theta_{0}\right)}\left(\hat{\theta}-\theta_{0}\right) \stackrel{\mathrm{a}}{\sim} \mathcal{N}(0,1)
$$

Slutsky's theorem now yields

$$
\sqrt{n i(\hat{\theta})}\left(\hat{\theta}-\theta_{0}\right) \stackrel{\mathrm{a}}{\sim} \mathcal{N}(0,1)
$$

(b) Taylor's theorem yields that

$$
\begin{aligned}
j_{n}(\hat{\theta}) / n & =-\frac{1}{n} \sum_{k=1}^{n} \frac{\partial^{2}}{\partial \theta^{2}} \log f\left(X_{k} ; \theta_{0}\right)-\frac{1}{n} \sum_{k=1}^{n} \frac{\partial^{3}}{\partial \theta^{3}} \log f\left(X_{k} ; \theta^{*}\right)\left(\hat{\theta}-\theta_{0}\right) \\
& =-\frac{1}{n} \sum_{k=1}^{n} \frac{\partial^{2}}{\partial \theta^{2}} \log f\left(X_{k} ; \theta_{0}\right)+R\left(X, \theta^{*}\right)
\end{aligned}
$$

for some θ^{*} between θ_{0} and $\hat{\theta}$.
The first of these terms converges in probability to $i\left(\theta_{0}\right)$.
As $\hat{\theta}$ is consistent and the third derivative is bounded in a neighbourhood of 0 , the absolute value of the second term satisfies

$$
\left|R\left(X, \theta^{*}\right)\right| \leq\left|\hat{\theta}-\theta_{0}\right| \frac{1}{n} \sum_{k=1}^{n} M_{k} \xrightarrow{P} 0
$$

and hence

$$
j_{n}(\hat{\theta}) / n \xrightarrow{P} i\left(\theta_{0}\right)
$$

(c) We have

$$
\sqrt{j_{n}(\hat{\theta})}\left(\hat{\theta}-\theta_{0}\right)=\sqrt{\frac{j_{n}(\hat{\theta}) / n}{i\left(\theta_{0}\right)}} \sqrt{n i\left(\theta_{0}\right)}\left(\hat{\theta}-\theta_{0}\right)
$$

The result under (b) shows that the fraction converges in probability to 1 . Slutsky's theorem now yields

$$
\sqrt{j_{n}(\hat{\theta})}\left(\hat{\theta}-\theta_{0}\right) \stackrel{\mathrm{a}}{\sim} \mathcal{N}(0,1)
$$

as required.

