BS2 Statistical Inference, MT 2004 Solution Sheet 4

1. Estimation in the Gamma distribution

(a) The asymptotic covariance matrix of (&, 3) is equal to the inverse of
the Fisher information matrix for a single observation times n~".

As this family is a canonical exponential family, the information matrix
is determined by differentiation of the log-normalising constant

(e, B) = log T(a) — arlog 3
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so taking inverses and dividing by n we get
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where 1/(a) is the Trigamma function.

and we get

The division with n was missing in the original problem sheet.

(b) Using the delta method on the function

g(aaﬁ) = (O‘ary) = (Oé, O‘/ﬁ)
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so the delta method yields
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so & and 4 are asymptotically independent.
2. Estimation in the normal distribution with known coefficient of variation.
(a) We get by differentiation of
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log f(xi; 1) = —% log(27) —



and summing over ¢ that
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If we let S =3 X; and SS =Y X? this can be rewritten as
n SS S
Sp)=—+—% - —.
() poopdop?

The likelihood equation is obtained by equating the score statistic to
0. Doing this and multiplying with 3 yields the equation

np® 4+ pS — 85 =0
which has exactly one positive root
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unless 5SS = 0, which implies all X; are equal to zero.

We get by further differentiation that
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Since [i satisfies the likelihood equation we have
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Inserting this into the expression for j(ji) we further get
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so the root of the likelihood equation is the unique local (and therefore
global) maximum.
We use that E(X?) = V(X) + {E(X)}? = 2u? and take expectations
in the expression for j(u) to get
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The asymptotic variance of i is the inverse of this, thus equal to
12/(3n).



(e)

SSD/u? is distributed as x?(n — 1), which is the distribution of

where Z; are i.i.d. and Z; ~ x%(1). It follows that
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For g(x) = 2y/x we have g’(az) = 1/y/x so the delta method yields that
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and since X and SSD are independent we further get

1p? +2u2 ,u2
9 n - 3n’
so this estimator is also asymptotically efficient.
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3. Equivalent forms of the asymptotic distribution of the MLE

(a)

As 0 is consistent, § £ 6y. As i is continuous, this implies z(é) = i(6p).
Since Cramér’s conditions imply that

ni(00)(0 — 60) ~ N(0,1),
Slutsky’s theorem now yields
ni(0)(0 — 0p) ~ N(0,1).

Taylor’s theorem yields that

jn(@)/n = ——Zae2logf (Xp: 00) — Zaaglogf (X3;0°)(0 — 6o)

= “2392 log f(Xx;60) + R(X, 6%)

for some 0* between 6y and 0.
The first of these terms converges in probability to i(6p).

As 0 is consistent and the third derivative is bounded in a neighbour-
hood of 0, the absolute value of the second term satisfies
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and hence

Gn(8)/n L i(8y).



(¢) We have

Vin(@)(0 — b0) = | 22 i) 0 - ).

The result under (b) shows that the fraction converges in probability
to 1. Slutsky’s theorem now yields
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as required.
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