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1. Estimation in the Gamma distribution

(a) The asymptotic covariance matrix of (α̂, β̂) is equal to the inverse of
the Fisher information matrix for a single observation times n−1.
As this family is a canonical exponential family, the information matrix
is determined by differentiation of the log-normalising constant

c(α, β) = log Γ(α)− α log β

and we get

i(θ) =

(
ψ′(α) −1/β
−1/β α/β2

)
,

so taking inverses and dividing by n we get

Cov(α̂, β̂) a=
1

n{αψ′(α)− 1}

(
α β
β β2ψ′(α)

)
,

where ψ′(α) is the Trigamma function.
The division with n was missing in the original problem sheet.

(b) Using the delta method on the function

g(α, β) = (α, γ) = (α, α/β)

yields
∂g

∂α
= (1, 1/β),

∂g

∂β
= (0,−α/β2)

so the delta method yields

Cov(α̂, γ̂) a=
1

n{αψ′(α)− 1}

(
1 0

1/β −α/β2

)(
α β
β β2ψ′(α)

)(
1 1/β
0 −α/β2

)

=
1
n

(
α

αψ′(α)−1 0
0 α/β2

)
,

so α̂ and γ̂ are asymptotically independent.

2. Estimation in the normal distribution with known coefficient of variation.

(a) We get by differentiation of

log f(xi;µ) = −1
2

log(2π)− logµ− x2
i

2µ2
+
xi
µ
− 1

2

1



and summing over i that

S(µ) = −n
µ

+
∑
iX

2
i

µ3
−
∑
iXi

µ2
.

If we let S =
∑
Xi and SS =

∑
X2
i this can be rewritten as

S(µ) = −n
µ

+
SS

µ3
− S

µ2
.

(b) The likelihood equation is obtained by equating the score statistic to
0. Doing this and multiplying with µ3 yields the equation

nµ2 + µS − SS = 0

which has exactly one positive root

µ̂ =
−S +

√
S2 + 4nSS
2n

unless SS = 0, which implies all Xi are equal to zero.

(c) We get by further differentiation that

j(µ) = − n

µ2
+

3SS
µ4

− 2S
µ3
.

Since µ̂ satisfies the likelihood equation we have

S

µ̂2
=
SS

µ̂3
− n

µ̂
.

Inserting this into the expression for j(µ̂) we further get

j(µ̂) =
n

µ̂2
+
SS

µ̂4
> 0,

so the root of the likelihood equation is the unique local (and therefore
global) maximum.

(d) We use that E(X2) = V(X) + {E(X)}2 = 2µ2 and take expectations
in the expression for j(µ) to get

i(µ) = E{j(µ)} = − n

µ2
+

6nµ2

µ4
− 2nµ

µ3
=

3n
µ2
.

The asymptotic variance of µ̂ is the inverse of this, thus equal to
µ2/(3n).
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(e) SSD/µ2 is distributed as χ2(n− 1), which is the distribution of

Y =
n−1∑

1

Zi

where Zi are i.i.d. and Zi ∼ χ2(1). It follows that

SSD

n− 1
a∼ N{µ2, 2µ4/n}.

For g(x) = 2
√
x we have g′(x) = 1/

√
x so the delta method yields that

2
√
SSD/(n− 1) a∼ N{2µ, 2µ2/n}

and since X̄ and SSD are independent we further get

V(µ̃) =
1
9
µ2 + 2µ2

n
=
µ2

3n
,

so this estimator is also asymptotically efficient.

3. Equivalent forms of the asymptotic distribution of the MLE

(a) As θ̂ is consistent, θ̂ P→ θ0. As i is continuous, this implies i(θ̂) P→ i(θ0).
Since Cramér’s conditions imply that√

ni(θ0)(θ̂ − θ0)
a∼ N (0, 1),

Slutsky’s theorem now yields√
ni(θ̂)(θ̂ − θ0)

a∼ N (0, 1).

(b) Taylor’s theorem yields that

jn(θ̂)/n = − 1
n

n∑
k=1

∂2

∂θ2
log f(Xk; θ0)−

1
n

n∑
k=1

∂3

∂θ3
log f(Xk; θ∗)(θ̂ − θ0)

= − 1
n

n∑
k=1

∂2

∂θ2
log f(Xk; θ0) +R(X, θ∗)

for some θ∗ between θ0 and θ̂.
The first of these terms converges in probability to i(θ0).
As θ̂ is consistent and the third derivative is bounded in a neighbour-
hood of 0, the absolute value of the second term satisfies

|R(X, θ∗)| ≤ |θ̂ − θ0|
1
n

n∑
k=1

Mk
P→ 0,

and hence
jn(θ̂)/n

P→ i(θ0).
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(c) We have

√
jn(θ̂)(θ̂ − θ0) =

√√√√jn(θ̂)/n
i(θ0)

√
ni(θ0)(θ̂ − θ0).

The result under (b) shows that the fraction converges in probability
to 1. Slutsky’s theorem now yields√

jn(θ̂)(θ̂ − θ0)
a∼ N (0, 1),

as required.

Steffen L. Lauritzen, University of Oxford November 17, 2004
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