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1. The binomial distribution as an exponential family

(a) For θ = log{p/(1− p)} we get

p =
eθ

1 + eθ
, 1− p =

1
1 + eθ

so we can write

f(x; θ) =

(
n

x

)
eθx

(1 + eθ)x

1
(1 + eθ)n−x

=

(
n

x

)
eθx

(1 + eθ)n
=

(
n

x

)
eθx−c(θ)

which identifies the family as a canonical exponential family with canon-
ical statistic t(x) = x and

(b) c(θ) = n log(1 + eθ);

(c) We get

E(X) = τ(θ) = c′(θ) =
eθ

1 + eθ

and

V(X) = c′′(θ) = n
eθ(1 + eθ)− (eθ)2

(1 + eθ)2
= n

eθ

(1 + eθ)2
= np(1− p).

(d) η = τ(θ) = np;

(e) The likelihood equation thus becomes

η̂ = np̂ = x

which has the familiar solution p̂ = x/n.

2. Estimation of risk.

(a) For θ = log λ we get λ = eθ and

f(x; θ) =
∏
i

(λNi)xi

xi!
e−λNi =

{∏
i

Nxi
i

xi!

}
eθ
∑

i
xi−eθ

∑
i
Ni

which identifies the family as canonical exponential with

(b) canonical sufficient statistic t(x) =
∑

i Xi and

c(θ) = eθ
∑

i

Ni

so the mean of the sufficient statistic is

E(
∑

i

Xi) = τ(θ) = c′(θ) = eθ
∑

i

Ni
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and the variance is

V(
∑

i

Xi) = c′′(θ) = eθ
∑

i

Ni.

This could also have been found by more traditional methods!

(c) The mean value parameter is

η = τ(θ) = eθ
∑

i

Ni = λ
∑

i

Ni.

(d) The maximum likelihood estimate λ̂ of λ is determined by equating the
canonical sufficient statistic to its expectation, i.e.∑

i

Xi = λ̂
∑

i

Ni

so
λ̂ =

∑
i Xi∑
i Ni

i.e. the ratio between the total number of occurrences and the total
number at risk.

(e) The Fisher information for λ is found as minus the expectation of

∂2

∂λ2

{
(log λ)

∑
i

Xi − λ
∑

i

Ni

}

to be
i(λ) =

∑
i Ni

λ
.

Since λ is a linear function of the mean value parameter, the maximum
likelihood estimate is efficient and thus

V(λ̂) = i(λ)−1 =
λ∑
i Ni

,

so to obtain a small variance it is important to study a large number
of individuals at risk.

3. Hardy–Weinberg equilibrium.

(a) Inserting µ into the probability mass function yields

f(x;µ) =

(
n

xAA, xAa, xaa

)
µ2xAA(2µ)xAa(1− µ)xAa(1− µ)2xaa .

Letting

θ = log
µ

1− µ
, µ =

eθ

1 + eθ
, 1− µ =

1
1 + eθ
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and rearranging, using n = xAA + xAa + xaa yields

f(x;µ) =

(
n

xAA, xAa, xaa

)
2xAa eθ(2xAA+xAa) 1

(1 + eθ)2n

which identifies an exponential family with canonical statistic t(X) =
2XAA + XAa;

(b) and canonical parameter

θ = log
µ

1− µ
.

(c) The log-normalizing function is

c(θ) = 2n log(1 + eθ).

(d) The mean value parameter is

τ(θ) = E(2XAA + XAa) = 2nµ.

(e) So the likelihood equation becomes

2xAA + xAa = 2nµ

which yields the MLE as

µ̂ =
2xAA + xAa

2n

the total number of A-alleles divided by the total number of alleles.

4. Non-regular exponential families.

(a) The probability densities

f(x; θ) =
eθx−c(θ)

1 + x4
, for x ≥ 0,

form an exponential family for θ ≤ 0 with log-normalising function

c(θ) = log

(∫ ∞

0

eθx

1 + x4
dx

)
.

The canonical sufficient statistic is x and since this is an exponential
family the expectation and variance of X are

Eθ(X) = c′(θ) and Vθ(X) = c′′(θ), for θ < 0. (∗)
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(b) By direct integration

E0(X) =
∫ ∞

0

xe−c(0)

1 + x4
dx =

π

4
e−c(0) = 1/

√
2,

since
ec(0) =

∫ ∞

0

1
1 + x4

dx =
π

4

√
2.

From (∗) it follows that Eθ(X) is strictly increasing since its derivative
c′′(θ) is the variance which is positive. It follows that Eθ(X) cannot
exceed 1/

√
2, so that the likelihood equation has no solution when

x > 1/
√

2.

(c) The derivative of log f(x; θ) with respect to θ is x−c′(θ) which is always
positive when x > 1/

√
2 and the likelihood function is therefore itself

increasing. It follows that f(x; θ) has its maximum at θ = 0 for these
cases, hence that θ̂ = 0 if x ≥ 1/

√
2.

(d) Indeed g integrable so we find as above that Θ = (−∞, 0]. In fact

ec(0) =
∫ ∞

0

1
1 + x2

dx =
π

2
.

(e) But here we get

E0(X) =
∫ ∞

0

xe−c(0)

1 + x2
dx = ∞,

so that τ(θ) = Eθ(X) is not bounded. As τ(θ) is continuous and
τ(−∞) = 0, the likelihood equation has a (unique) solution for all
0 < x < ∞.

Steffen L. Lauritzen, University of Oxford November 14, 2004
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