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1. The binomial distribution as an exponential family

(a) For 6 =log{p/(1 —p)} we get
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SO we can write
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which identifies the family as a canonical exponential family with canon-
ical statistic ¢(z) = = and

(b) ¢(6) = nlog(1+ €%);

(c) We get
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0 14+ 69) _ (69)2 69
V(X) = () = n™ - 1-
(X) = ¢(0) 15 ) ") np(1 —p)
(d) n=r7(0) =np;
(e) The likelihood equation thus becomes
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which has the familiar solution p = z/n.
2. Estimation of risk.
(a) For 6 = log A we get A = ¢’ and
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which identifies the family as canonical exponential with
(b) canonical sufficient statistic t(z) = >, X; and

c() = ¢’ Z N;
i
so the mean of the sufficient statistic is
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and the variance is
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This could also have been found by more traditional methods!

(c) The mean value parameter is
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(d) The maximum likelihood estimate X of A is determined by equating the
canonical sufficient statistic to its expectation, i.e.
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i.e. the ratio between the total number of occurrences and the total
number at risk.
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(e) The Fisher information for A is found as minus the expectation of
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Since A is a linear function of the mean value parameter, the maximum
likelihood estimate is efficient and thus
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so to obtain a small variance it is important to study a large number
of individuals at risk.
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3. Hardy—Weinberg equilibrium.

(a) Inserting p into the probability mass function yields
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Letting
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and rearranging, using n = 44 + Taq + Taq yields
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which identifies an exponential family with canonical statistic t(X) =
2Xaa + Xaa;

(b) and canonical parameter
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(c) The log-normalizing function is
() = 2nlog(1 + €%).
(d) The mean value parameter is
7(0) = E(2X 44 + Xaa) = 2np.
(e) So the likelihood equation becomes
20 44 + T aq = 2np

which yields the MLE as
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the total number of A-alleles divided by the total number of alleles.

4. Non-regular exponential families.

(a) The probability densities
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, forx >0,
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form an exponential family for § < 0 with log-normalising function
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The canonical sufficient statistic is « and since this is an exponential
family the expectation and variance of X are

Eo(X)=c(0) and Vy(X)=c"(0), forf<D0. (%)



(b) By direct integration
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From (%) it follows that Eg(X) is strictly increasing since its derivative
c’(0) is the variance which is positive. It follows that Ey(X) cannot
exceed 1/ V2, so that the likelihood equation has no solution when
x> 1/v2.

(¢) The derivative of log f(z;6) with respect to 6 is x—¢/(6) which is always
positive when x > 1/4/2 and the likelihood function is therefore itself
increasing. It follows that f(x;6) has its maximum at § = 0 for these
cases, hence that 6=0if x> 1/V2.

(d) Indeed g integrable so we find as above that © = (—o0,0]. In fact
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(e) But here we get
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so that 7(0) = Ey(X) is not bounded. As 7(0) is continuous and

7(—00) = 0, the likelihood equation has a (unique) solution for all
0<x<oo.
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