1. The binomial distribution as an exponential family
(a) For $\theta=\log \{p /(1-p)\}$ we get

$$
p=\frac{e^{\theta}}{1+e^{\theta}}, \quad 1-p=\frac{1}{1+e^{\theta}}
$$

so we can write

$$
f(x ; \theta)=\binom{n}{x} \frac{e^{\theta x}}{\left(1+e^{\theta}\right)^{x}} \frac{1}{\left(1+e^{\theta}\right)^{n-x}}=\binom{n}{x} \frac{e^{\theta x}}{\left(1+e^{\theta}\right)^{n}}=\binom{n}{x} e^{\theta x-c(\theta)}
$$

which identifies the family as a canonical exponential family with canonical statistic $t(x)=x$ and
(b) $c(\theta)=n \log \left(1+e^{\theta}\right)$;
(c) We get

$$
\mathbf{E}(X)=\tau(\theta)=c^{\prime}(\theta)=\frac{e^{\theta}}{1+e^{\theta}}
$$

and

$$
\mathbf{V}(X)=c^{\prime \prime}(\theta)=n \frac{e^{\theta}\left(1+e^{\theta}\right)-\left(e^{\theta}\right)^{2}}{\left(1+e^{\theta}\right)^{2}}=n \frac{e^{\theta}}{\left(1+e^{\theta}\right)^{2}}=n p(1-p)
$$

(d) $\eta=\tau(\theta)=n p$;
(e) The likelihood equation thus becomes

$$
\hat{\eta}=n \hat{p}=x
$$

which has the familiar solution $\hat{p}=x / n$.
2. Estimation of risk.
(a) For $\theta=\log \lambda$ we get $\lambda=e^{\theta}$ and

$$
f(x ; \theta)=\prod_{i} \frac{\left(\lambda N_{i}\right)^{x_{i}}}{x_{i}!} e^{-\lambda N i}=\left\{\prod_{i} \frac{N_{i}^{x_{i}}}{x_{i}!}\right\} e^{\theta \sum_{i} x_{i}-e^{\theta} \sum_{i} N i}
$$

which identifies the family as canonical exponential with
(b) canonical sufficient statistic $t(x)=\sum_{i} X_{i}$ and

$$
c(\theta)=e^{\theta} \sum_{i} N_{i}
$$

so the mean of the sufficient statistic is

$$
\mathbf{E}\left(\sum_{i} X_{i}\right)=\tau(\theta)=c^{\prime}(\theta)=e^{\theta} \sum_{i} N_{i}
$$

and the variance is

$$
\mathbf{V}\left(\sum_{i} X_{i}\right)=c^{\prime \prime}(\theta)=e^{\theta} \sum_{i} N_{i} .
$$

This could also have been found by more traditional methods!
(c) The mean value parameter is

$$
\eta=\tau(\theta)=e^{\theta} \sum_{i} N_{i}=\lambda \sum_{i} N_{i} .
$$

(d) The maximum likelihood estimate $\hat{\lambda}$ of λ is determined by equating the canonical sufficient statistic to its expectation, i.e.

$$
\sum_{i} X_{i}=\hat{\lambda} \sum_{i} N_{i}
$$

so

$$
\hat{\lambda}=\frac{\sum_{i} X_{i}}{\sum_{i} N_{i}}
$$

i.e. the ratio between the total number of occurrences and the total number at risk.
(e) The Fisher information for λ is found as minus the expectation of

$$
\frac{\partial^{2}}{\partial \lambda^{2}}\left\{(\log \lambda) \sum_{i} X_{i}-\lambda \sum_{i} N_{i}\right\}
$$

to be

$$
i(\lambda)=\frac{\sum_{i} N_{i}}{\lambda} .
$$

Since λ is a linear function of the mean value parameter, the maximum likelihood estimate is efficient and thus

$$
\mathbf{V}(\hat{\lambda})=i(\lambda)^{-1}=\frac{\lambda}{\sum_{i} N_{i}},
$$

so to obtain a small variance it is important to study a large number of individuals at risk.
3. Hardy-Weinberg equilibrium.
(a) Inserting μ into the probability mass function yields

$$
f(x ; \mu)=\binom{n}{x_{A A}, x_{A a}, x_{a a}} \mu^{2 x_{A A}}(2 \mu)^{x_{A a}}(1-\mu)^{x_{A a}}(1-\mu)^{2 x_{a a}} .
$$

Letting

$$
\theta=\log \frac{\mu}{1-\mu}, \quad \mu=\frac{e^{\theta}}{1+e^{\theta}}, \quad 1-\mu=\frac{1}{1+e^{\theta}}
$$

and rearranging, using $n=x_{A A}+x_{A a}+x_{a a}$ yields

$$
f(x ; \mu)=\binom{n}{x_{A A}, x_{A a}, x_{a a}} 2^{x_{A a}} e^{\theta\left(2 x_{A A}+x_{A a}\right)} \frac{1}{\left(1+e^{\theta}\right)^{2 n}}
$$

which identifies an exponential family with canonical statistic $t(X)=$ $2 X_{A A}+X_{A a}$;
(b) and canonical parameter

$$
\theta=\log \frac{\mu}{1-\mu}
$$

(c) The log-normalizing function is

$$
c(\theta)=2 n \log \left(1+e^{\theta}\right)
$$

(d) The mean value parameter is

$$
\tau(\theta)=\mathbf{E}\left(2 X_{A A}+X_{A a}\right)=2 n \mu
$$

(e) So the likelihood equation becomes

$$
2 x_{A A}+x_{A a}=2 n \mu
$$

which yields the MLE as

$$
\hat{\mu}=\frac{2 x_{A A}+x_{A a}}{2 n}
$$

the total number of A-alleles divided by the total number of alleles.
4. Non-regular exponential families.
(a) The probability densities

$$
f(x ; \theta)=\frac{e^{\theta x-c(\theta)}}{1+x^{4}}, \quad \text { for } x \geq 0
$$

form an exponential family for $\theta \leq 0$ with log-normalising function

$$
c(\theta)=\log \left(\int_{0}^{\infty} \frac{e^{\theta x}}{1+x^{4}} d x\right)
$$

The canonical sufficient statistic is x and since this is an exponential family the expectation and variance of X are

$$
\begin{equation*}
\mathbf{E}_{\theta}(X)=c^{\prime}(\theta) \quad \text { and } \quad \mathbf{V}_{\theta}(X)=c^{\prime \prime}(\theta), \quad \text { for } \theta<0 \tag{*}
\end{equation*}
$$

(b) By direct integration

$$
\mathbf{E}_{0}(X)=\int_{0}^{\infty} \frac{x e^{-c(0)}}{1+x^{4}} d x=\frac{\pi}{4} e^{-c(0)}=1 / \sqrt{2}
$$

since

$$
e^{c(0)}=\int_{0}^{\infty} \frac{1}{1+x^{4}} d x=\frac{\pi}{4} \sqrt{2}
$$

From (*) it follows that $\mathbf{E}_{\theta}(X)$ is strictly increasing since its derivative $c^{\prime \prime}(\theta)$ is the variance which is positive. It follows that $\mathbf{E}_{\theta}(X)$ cannot exceed $1 / \sqrt{2}$, so that the likelihood equation has no solution when $x>1 / \sqrt{2}$.
(c) The derivative of $\log f(x ; \theta)$ with respect to θ is $x-c^{\prime}(\theta)$ which is always positive when $x>1 / \sqrt{2}$ and the likelihood function is therefore itself increasing. It follows that $f(x ; \theta)$ has its maximum at $\theta=0$ for these cases, hence that $\hat{\theta}=0$ if $x \geq 1 / \sqrt{2}$.
(d) Indeed g integrable so we find as above that $\Theta=(-\infty, 0]$. In fact

$$
e^{c(0)}=\int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\frac{\pi}{2}
$$

(e) But here we get

$$
\mathbf{E}_{0}(X)=\int_{0}^{\infty} \frac{x e^{-c(0)}}{1+x^{2}} d x=\infty
$$

so that $\tau(\theta)=\mathbf{E}_{\theta}(X)$ is not bounded. As $\tau(\theta)$ is continuous and $\tau(-\infty)=0$, the likelihood equation has a (unique) solution for all $0<x<\infty$.

