
BS2 Statistical Inference, MT 2004 Solution Sheet 2

1. Estimation in the exponential distribution.

(a)

E(θ̃2) = E{X2
1/2} =

1
2θ

∫
x2e−x/θ =

1
2θ

θ2Γ(3) = θ.

(b) The joint density of X = (X1, . . . , Xn) is

f(x; θ) =
1
θn

∏
i

e−xi/θ =
1
θn

e−
∑

i
xi/θ,

and Neyman’s factorization theorem yields the result.
(c) Let T = t(X) =

∑
i Xi. Using the hint provided we find that

E{X2
1/2 |T = t} =

t2

2
E{(X1/T )2 |T = t} =

t2

2

∫ 1

0

b2(1− b)n−2

B(1, n− 1)
db

=
t2

2
B(3, n− 1)
B(1, n− 1)

,

where
B(α, β) =

Γ(α)Γ(β)
Γ(α + β)

.

Inserting this into the last expression yields the Rao-Blackwellized es-
timator

θ̌2 = E{X2
1/2 |T} =

T 2

2
Γ(3)Γ(n− 1)Γ(n)

Γ(n + 2)Γ(1)Γ(n− 1)
=

(
∑

Xi)2

n(n + 1)
.

(d) The Fisher information about θ is obtained as follows.

S(θ) =
∂

∂θ
log f(X; θ) =

n

θ
−
∑

i Xi

θ2
, − ∂2

∂θ2
log f(X; θ) =

−n

θ2
+

2
∑

i Xi

θ3
.

Taking expectations yields

i(θ) =
−n

θ2
+

2nθ

θ3
=

n

θ2
,

so the Cramér–Rao bound for unbiased estimation of θ2 becomes

(2θ)2
θ2

n
=

4θ4

n
.

Let Yi = Xi/θ; then U =
∑

Yi is Gamma distributed with parameters
(n, 1) so

V(U2) = E(U4)− {E(U2)}2 =
Γ(n + 4)

Γ(n)
−
(

Γ(n + 2)
Γ(n)

)2

= n(n + 1)(n + 2)(n + 3)− n2(n + 1)2 = 2n(n + 1)(n + 3).
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Thus
V(θ̌2) = θ4 2n(n + 1)(n + 3)

n2(n + 1)2
= θ4 2(2n + 3)

n(n + 1)
,

and the Bahadur efficiency becomes

beff(θ̌2) =
2n + 2
2n + 3

< 1,

so the bound is not attained and the estimator is not Bahadur efficient
(although close).

(e) The MLE is determined by S(θ̂) = 0 so we get θ̂ = X̄ and θ̂2 = X̄2.
This has expectation and variance equal to

E(θ̂2) =
θ2

n2
E(U2) = θ2 n + 1

n
, V(θ̂2) = θ4 2n(n + 1)(2n + 3)

n4
.

Thus we have V(θ̂2) > V(θ̌2) and since the last is unbiased this implies
in particular

mse(θ̌2) < mse(θ̂2).

Note that θ̌ is the bias-corrected version of θ̂.

2. Properties of Fisher information

(a) We have

− ∂2

∂θ2
log f(X; θ) = − ∂2

∂θ2
log f(X1; θ)− · · · − ∂2

∂θ2
log f(Xn; θ).

Taking expectations on both sides yields

i(θ) = i1(θ) + · · ·+ in(θ).

(b) We have that
f(x; θ) = f(x | t(x); θ)f{t(x); θ}

Now, let Y = t(X), take logaritms and second derivatives to get

− ∂2

∂θ2
log f(X; θ) = − ∂2

∂θ2
log f(X |Y ; θ)− ∂2

∂θ2
log f(Y ; θ)

Next, take expectations to find

i(θ) = −E

{
∂2

∂θ2
log f(X |Y ; θ)

}
+ iY (θ).

Iterate expectations in the first term to yield

i(θ) = E

{
−E

(
∂2

∂θ2
log f(X |Y ; θ) |Y

)}
= iX |Y (θ).
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(c) The loss of information iX |Y (θ) is always non-negative as it is the
expectation of the variance of the conditional score statistic. This yields
the inequality

i(θ) ≥ iY (θ).

Equality can only happen when the conditional score statistic is iden-
tically equal to 0 and therefore

f(x | t(x); θ) = h(x)

is independent of θ, i.e. that Y = t(X) is sufficient.

3. Estimation in a uniform position-scale model.

(a) The likelihood function is

L(µ, δ) =

{
(2δ)−n if µ− δ > x(1) and µ + δ < x(n)

0 otherwise

so (X(1), X(n)) is clearly sufficient. But since (X(1), X(n)) also can be
inferred from the likelihood function it is also minimal sufficient.

(b) We have
E(X) = µ, V(X) = δ2/3

so

µ̃ = X̄, δ̃ =

√
3 SSD

n
.

(c) The likelihood function is maximized when δ is minimized, subject to
the constraint that the interval (µ − δ, µ + δ) must contain X(1) and
X(n). This minimum is attained when

µ̂ = (X(1) + X(n))/2, δ̂ = (X(n) −X(1))/2.

(Note there was a small typo here in the original problem sheet).

(d) Let Yi = Xi − µ. Then Y has a symmetric distribution so

E(Y(1)) = −E(Y(n))

and thus

E(µ̂) = E{(X(1) + X(n))/2} =) = µ + E{(Y(1) + Y(n))/2} = µ.

(e) The variance of µ̃ is δ2/(3n).
To find the variance of the MLE we introduce Zi = (Xi − µ)/δ which
are clearly uniform on (−1, 1), and (U, V ) = (Z(1), Z(n)). Realising that
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W = V + 1 is uniform on (0, 2) and using a result from the previous
problem sheet we get

V(U) = V(V ) = V(W ) =
4n

(n + 2)(n + 1)2
.

To find the covariance of U and V we first find their joint density. We
get for −1 < u < v < 1 that

P (U > u, V ≤ v) =
(v − u)n

2n

and differentiation w.r.t. u and v yields the density

f(u, v) =

{
n(n− 1)(v − u)n−2/2n if −1 < u < v < 1

0 otherwise.

Now the variance of V − U is found by direct integration to

V(V − U) =
n(n− 1)

2n(n + 1)(n + 2)

so using

V(V−U) = V(U)+V(V )−2 Cov(U, V ),V(U+V ) = V(U)+V(V )+2Cov(U, V )

we get

Vµ̂ = δ2
{

1
4
V(U + V )

}
= δ2

{
n

(n + 2)(n + 1)2
− n(n− 1)

2n+2(n + 1)(n + 2)

}
,

which goes to 0 at the rate of n−2.
(f) When δ = 1, we have that the distribution of A does not depend on µ

since
X(n) −X(1) = (X(n) − µ)− (X(1) − µ).

(g) Let B = (U + V )/2 and A = (V − U)/2. This linear transformation
has determinant 1/2 so the joint density of (a, b) is

f(a, b) =

{
2n(n− 1)an−2 if −1 < b− a < b + a < 1

0 otherwise.

The conditional density of B given A = a is then found by keeping a
constant so

f(b | a) ∝
{

1 if −1 < b− a < b + a < 1
0 otherwise.

i.e. the MLE is uniformly distributed on the appropriate interval:

f(µ̂ | a) ∝
{

1 if −1 + a + µ < b < 1 + µ− a
0 otherwise.

Steffen L. Lauritzen, University of Oxford November 2, 2004
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