1. Estimation in the exponential distribution.
(a)

$$
\mathbf{E}\left(\tilde{\theta}^{2}\right)=\mathbf{E}\left\{X_{1}^{2} / 2\right\}=\frac{1}{2 \theta} \int x^{2} e^{-x / \theta}=\frac{1}{2 \theta} \theta^{2} \Gamma(3)=\theta
$$

(b) The joint density of $X=\left(X_{1}, \ldots, X_{n}\right)$ is

$$
f(x ; \theta)=\frac{1}{\theta^{n}} \prod_{i} e^{-x_{i} / \theta}=\frac{1}{\theta^{n}} e^{-\sum_{i} x_{i} / \theta}
$$

and Neyman's factorization theorem yields the result.
(c) Let $T=t(X)=\sum_{i} X_{i}$. Using the hint provided we find that

$$
\begin{aligned}
\mathbf{E}\left\{X_{1}^{2} / 2 \mid T=t\right\} & =\frac{t^{2}}{2} \mathbf{E}\left\{\left(X_{1} / T\right)^{2} \mid T=t\right\}=\frac{t^{2}}{2} \int_{0}^{1} \frac{b^{2}(1-b)^{n-2}}{B(1, n-1)} d b \\
& =\frac{t^{2}}{2} \frac{B(3, n-1)}{B(1, n-1)}
\end{aligned}
$$

where

$$
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

Inserting this into the last expression yields the Rao-Blackwellized estimator

$$
\check{\theta}^{2}=E\left\{X_{1}^{2} / 2 \mid T\right\}=\frac{T^{2}}{2} \frac{\Gamma(3) \Gamma(n-1) \Gamma(n)}{\Gamma(n+2) \Gamma(1) \Gamma(n-1)}=\frac{\left(\sum X_{i}\right)^{2}}{n(n+1)}
$$

(d) The Fisher information about θ is obtained as follows.
$S(\theta)=\frac{\partial}{\partial \theta} \log f(X ; \theta)=\frac{n}{\theta}-\frac{\sum_{i} X_{i}}{\theta^{2}}, \quad-\frac{\partial^{2}}{\partial \theta^{2}} \log f(X ; \theta)=\frac{-n}{\theta^{2}}+\frac{2 \sum_{i} X_{i}}{\theta^{3}}$.
Taking expectations yields

$$
i(\theta)=\frac{-n}{\theta^{2}}+\frac{2 n \theta}{\theta^{3}}=\frac{n}{\theta^{2}}
$$

so the Cramér-Rao bound for unbiased estimation of θ^{2} becomes

$$
(2 \theta)^{2} \frac{\theta^{2}}{n}=\frac{4 \theta^{4}}{n}
$$

Let $Y_{i}=X_{i} / \theta$; then $U=\sum Y_{i}$ is Gamma distributed with parameters $(n, 1)$ so

$$
\begin{aligned}
\mathbf{V}\left(U^{2}\right) & =\mathbf{E}\left(U^{4}\right)-\left\{\mathbf{E}\left(U^{2}\right)\right\}^{2}=\frac{\Gamma(n+4)}{\Gamma(n)}-\left(\frac{\Gamma(n+2)}{\Gamma(n)}\right)^{2} \\
& =n(n+1)(n+2)(n+3)-n^{2}(n+1)^{2}=2 n(n+1)(n+3)
\end{aligned}
$$

Thus

$$
\mathbf{V}\left(\check{\theta}^{2}\right)=\theta^{2} \frac{2 n(n+1)(n+3)}{n^{2}(n+1)^{2}}=\theta^{4} \frac{2(2 n+3)}{n(n+1)},
$$

and the Bahadur efficiency becomes

$$
\operatorname{beff}\left(\check{\theta}^{2}\right)=\frac{2 n+2}{2 n+3}<1,
$$

so the bound is not attained and the estimator is not Bahadur efficient (although close).
(e) The MLE is determined by $S(\hat{\theta})=0$ so we get $\hat{\theta}=\bar{X}$ and $\hat{\theta}^{2}=\bar{X}^{2}$. This has expectation and variance equal to

$$
\mathbf{E}\left(\hat{\theta}^{2}\right)=\frac{\theta^{2}}{n^{2}} \mathbf{E}\left(U^{2}\right)=\theta^{2} \frac{n+1}{n}, \quad \mathbf{V}\left(\hat{\theta}^{2}\right)=\theta^{4} \frac{2 n(n+1)(2 n+3)}{n^{4}} .
$$

Thus we have $\mathbf{V}\left(\hat{\theta}^{2}\right)>\mathbf{V}\left(\check{\theta}^{2}\right)$ and since the last is unbiased this implies in particular

$$
\operatorname{mse}\left(\check{\theta}^{2}\right)<\operatorname{mse}\left(\hat{\theta}^{2}\right) .
$$

Note that $\check{\theta}$ is the bias-corrected version of $\hat{\theta}$.
2. Properties of Fisher information
(a) We have

$$
-\frac{\partial^{2}}{\partial \theta^{2}} \log f(X ; \theta)=-\frac{\partial^{2}}{\partial \theta^{2}} \log f\left(X_{1} ; \theta\right)-\cdots-\frac{\partial^{2}}{\partial \theta^{2}} \log f\left(X_{n} ; \theta\right) .
$$

Taking expectations on both sides yields

$$
i(\theta)=i_{1}(\theta)+\cdots+i_{n}(\theta) .
$$

(b) We have that

$$
f(x ; \theta)=f(x \mid t(x) ; \theta) f\{t(x) ; \theta\}
$$

Now, let $Y=t(X)$, take logaritms and second derivatives to get

$$
-\frac{\partial^{2}}{\partial \theta^{2}} \log f(X ; \theta)=-\frac{\partial^{2}}{\partial \theta^{2}} \log f(X \mid Y ; \theta)-\frac{\partial^{2}}{\partial \theta^{2}} \log f(Y ; \theta)
$$

Next, take expectations to find

$$
i(\theta)=-\mathbf{E}\left\{\frac{\partial^{2}}{\partial \theta^{2}} \log f(X \mid Y ; \theta)\right\}+i_{Y}(\theta) .
$$

Iterate expectations in the first term to yield

$$
i(\theta)=\mathbf{E}\left\{-\mathbf{E}\left(\left.\frac{\partial^{2}}{\partial \theta^{2}} \log f(X \mid Y ; \theta) \right\rvert\, Y\right)\right\}=i_{X \mid Y}(\theta) .
$$

(c) The loss of information $i_{X \mid Y}(\theta)$ is always non-negative as it is the expectation of the variance of the conditional score statistic. This yields the inequality

$$
i(\theta) \geq i_{Y}(\theta)
$$

Equality can only happen when the conditional score statistic is identically equal to 0 and therefore

$$
f(x \mid t(x) ; \theta)=h(x)
$$

is independent of θ, i.e. that $Y=t(X)$ is sufficient.
3. Estimation in a uniform position-scale model.
(a) The likelihood function is

$$
L(\mu, \delta)=\left\{\begin{array}{cc}
(2 \delta)^{-n} & \text { if } \mu-\delta>x_{(1)} \text { and } \mu+\delta<x_{(n)} \\
0 & \text { otherwise }
\end{array}\right.
$$

so ($X^{(1)}, X^{(n)}$) is clearly sufficient. But since $\left(X^{(1)}, X^{(n)}\right)$ also can be inferred from the likelihood function it is also minimal sufficient.
(b) We have

$$
\mathbf{E}(X)=\mu, \quad \mathbf{V}(X)=\delta^{2} / 3
$$

so

$$
\tilde{\mu}=\bar{X}, \quad \tilde{\delta}=\sqrt{\frac{3 S S D}{n}} .
$$

(c) The likelihood function is maximized when δ is minimized, subject to the constraint that the interval $(\mu-\delta, \mu+\delta)$ must contain $X_{(1)}$ and $X_{(n)}$. This minimum is attained when

$$
\hat{\mu}=\left(X_{(1)}+X_{(n)}\right) / 2, \quad \hat{\delta}=\left(X_{(n)}-X_{(1)}\right) / 2 .
$$

(Note there was a small typo here in the original problem sheet).
(d) Let $Y_{i}=X_{i}-\mu$. Then Y has a symmetric distribution so

$$
\mathbf{E}\left(Y_{(1)}\right)=-\mathbf{E}\left(Y_{(n)}\right)
$$

and thus

$$
\left.\mathbf{E}(\hat{\mu})=\mathbf{E}\left\{\left(X_{(1)}+X_{(n)}\right) / 2\right\}=\right)=\mu+\mathbf{E}\left\{\left(Y_{(1)}+Y_{(n)}\right) / 2\right\}=\mu .
$$

(e) The variance of $\tilde{\mu}$ is $\delta^{2} /(3 n)$.

To find the variance of the MLE we introduce $Z_{i}=\left(X_{i}-\mu\right) / \delta$ which are clearly uniform on $(-1,1)$, and $(U, V)=\left(Z_{(1)}, Z_{(n)}\right)$. Realising that
$W=V+1$ is uniform on $(0,2)$ and using a result from the previous problem sheet we get

$$
\mathbf{V}(U)=\mathbf{V}(V)=\mathbf{V}(W)=\frac{4 n}{(n+2)(n+1)^{2}}
$$

To find the covariance of U and V we first find their joint density. We get for $-1<u<v<1$ that

$$
P(U>u, V \leq v)=\frac{(v-u)^{n}}{2^{n}}
$$

and differentiation w.r.t. u and v yields the density

$$
f(u, v)=\left\{\begin{array}{cc}
n(n-1)(v-u)^{n-2} / 2^{n} & \text { if }-1<u<v<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Now the variance of $V-U$ is found by direct integration to

$$
\mathbf{V}(V-U)=\frac{n(n-1)}{2^{n}(n+1)(n+2)}
$$

so using
$\mathbf{V}(V-U)=\mathbf{V}(U)+\mathbf{V}(V)-2 \operatorname{Cov}(U, V), \mathbf{V}(U+V)=\mathbf{V}(U)+\mathbf{V}(V)+2 \operatorname{Cov}(U, V)$
we get
$\mathbf{V} \hat{\mu}=\delta^{2}\left\{\frac{1}{4} \mathbf{V}(U+V)\right\}=\delta^{2}\left\{\frac{n}{(n+2)(n+1)^{2}}-\frac{n(n-1)}{2^{n+2}(n+1)(n+2)}\right\}$,
which goes to 0 at the rate of n^{-2}.
(f) When $\delta=1$, we have that the distribution of A does not depend on μ since

$$
X_{(n)}-X_{(1)}=\left(X_{(n)}-\mu\right)-\left(X_{(1)}-\mu\right) .
$$

(g) Let $B=(U+V) / 2$ and $A=(V-U) / 2$. This linear transformation has determinant $1 / 2$ so the joint density of (a, b) is

$$
f(a, b)=\left\{\begin{array}{cc}
2 n(n-1) a^{n-2} & \text { if }-1<b-a<b+a<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

The conditional density of B given $A=a$ is then found by keeping a constant so

$$
f(b \mid a) \propto\left\{\begin{array}{cc}
1 & \text { if }-1<b-a<b+a<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

i.e. the $M L E$ is uniformly distributed on the appropriate interval:

$$
f(\hat{\mu} \mid a) \propto\left\{\begin{array}{cc}
1 & \text { if }-1+a+\mu<b<1+\mu-a \\
0 & \text { otherwise }
\end{array}\right.
$$

