1. Estimation in the normal distribution:
(a) We have

$$
\mathbf{E}(\bar{X})=\mathbf{E}\left\{\left(X_{1}+\cdots+X_{n}\right) / n\right\}=\left\{\mathbf{E}\left(X_{1}\right)+\cdots+\mathbf{E}\left(X_{n}\right)\right\} / n=n \mu / n=\mu
$$

(b) The symmetry of the distribution of $X_{i}-\mu$ implies

$$
\mathbf{E}\left\{(X-\mu)_{(p+1)}\right\}=\mathbf{E}\left\{(\mu-X)_{(p+1)}\right\}
$$

Combining this with the identity

$$
X_{(p+1)}-\mu=(X-\mu)_{(p+1)}=-\left\{(\mu-X)_{(p+1)}\right\}
$$

yields
$\mathbf{E}\left\{X_{(p+1)}-\mu\right\}=\mathbf{E}\left\{(X-\mu)_{(p+1)}\right\}=\mathbf{E}\left\{(\mu-X)_{(p+1)}\right\}=-\mathbf{E}\left\{(\mu-X)_{(p+1)}\right\}=0$
and hence that $\mathbf{E}(\tilde{\mu})=\mathbf{E}\left(X_{(p+1)}\right)=\mu$.
Note that the argument applies to any distribution which is symmetric around μ so the unbiasedness does not only hold in the normal case.
(c) The identity for any positive random variable

$$
\mathbf{V}(\sqrt{Y})=\mathbf{E}(Y)-\{\mathbf{E}(\sqrt{Y})\}^{2}
$$

yields for $Y=S S D / n$ where, clearly, $\mathbf{V}(\sqrt{Y})>0$

$$
\mathbf{E}(\hat{\sigma})=\mathbf{E}\{\sqrt{(S S D / n)}\}<\sqrt{\mathbf{E}(S S D / n)}=\sigma
$$

hence $\hat{\sigma}$ is not unbiased.
(d) For $n=3, Y=S S D / \sigma^{2}$ follows a χ^{2}-distribution with two degrees of freedom, hence

$$
\mathbf{E}(\sqrt{Y})=\int_{0}^{\infty} \sqrt{y} \frac{1}{2 \Gamma(1)} e^{-y / 2} d y=\frac{2^{3 / 2} \Gamma(3 / 2)}{2 \Gamma(1)}=\sqrt{2} \frac{1}{2} \Gamma(1 / 2)=\sqrt{\pi / 2}
$$

hence $\tilde{\sigma}=2 \hat{\sigma} / \sqrt{\pi}$ is unbiased for σ.
(e) If we let $d=(n-1)$ we similarly find for general n that

$$
\mathbf{E}(\sqrt{Y})=\int_{0}^{\infty} \sqrt{y} \frac{y^{d / 2-1}}{2^{d / 2} \Gamma(d / 2)} e^{-y / 2} d y=\frac{2^{(d+1) / 2} \Gamma((d+1) / 2)}{2^{d / 2} \Gamma(d / 2)}
$$

So

$$
c=\frac{\sqrt{d} \Gamma(d / 2)}{\sqrt{2} \Gamma((d+1) / 2)}
$$

makes $c S$ an unbiased estimator of σ.
2. Estimation in the uniform distribution on $(0, \theta)$
(a) The variance of the average is

$$
\mathbf{V}(\tilde{\theta})=\mathbf{V}(\bar{X})=\frac{\theta^{2}}{12 n}
$$

as $\mathbf{V}\left(X_{i}\right)=\theta^{2} / 12$, which is seen by direct integration
$\mathbf{E}\left(X_{i}\right)=\int_{0}^{\theta} \frac{1}{\theta} x d x=\theta / 2, \quad \mathbf{E}\left(X_{i}^{2}\right)=\theta^{2} / 3, \quad \mathbf{V}\left(X_{i}\right)=\theta^{2} / 3-\theta^{2} / 4=\theta^{2} / 12$.
(b) The likelihood function is 0 for $0<\theta<x_{(n)}$ and equal to θ^{-n} for $\theta>x_{(n)}$.
(c) Let $U=X_{(n)}$, we then have

$$
P(U \leq u)=\prod_{i}^{n} P\left(X_{i} \leq u\right)=(u / \theta)^{n} \text { for } 0<u<\theta
$$

so differentiation yields that U has density

$$
f(u ; \theta)=n u^{n-1} \theta^{-n} \text { for } 0<u<\theta .
$$

Direct integration now yields

$$
\mathbf{E}(\hat{\theta})=\mathbf{E}(U)=\frac{n \theta}{n+1}
$$

(d) The estimator

$$
\check{\theta}=\frac{n+1}{n} X_{(n)}
$$

is unbiased. Direct integration gives $E\left(U^{2}\right)=\left(n \theta^{2}\right) /(n+2)$ so

$$
\mathbf{V}(\hat{\theta})=\mathbf{V}(U)=\frac{n \theta^{2}}{(n+2)(n+1)^{2}}
$$

and

$$
\mathbf{V}(\check{\theta})=\frac{\theta^{2}}{n(n+2)}
$$

(e) Clearly, the mean square error of $\tilde{\theta}$ is very large compared to the mean square error of $\check{\theta}$. Even the ratio of variances of the second to the first is

$$
\frac{12 n}{n(n+2)}=\frac{12}{n+2}
$$

which tends to 0 for $n \rightarrow \infty$.

The mean square error of $\hat{\theta}$ is

$$
\begin{aligned}
\operatorname{mse}(\hat{\theta}) & =\mathbf{V}(\hat{\theta})+\{\operatorname{bias}(\hat{\theta})\}^{2} \\
& =\theta^{2}\left(\frac{n}{(n+2)(n+1)^{2}}+\frac{1}{(n+1)^{2}}\right)=\frac{2 \theta^{2}}{(n+2)(n+1)},
\end{aligned}
$$

so, in terms of mean square error,

$$
\operatorname{reff}(\check{\theta}: \hat{\theta})=\frac{\operatorname{mse}(\hat{\theta})}{\operatorname{mse}(\check{\theta})}=\frac{2 n}{n+1}
$$

which is larger than 1 unless $n=1$, so the bias-correction seems well justified in this case.
3. Linear unbiased estimation
(a) We get

$$
\mathbf{E}(\hat{\mu})=\mathbf{E}\left(w_{1} X_{1}+w_{2} X_{2}+\cdots+w_{n} X_{n}\right)=\sum_{i} w_{i} \mathbf{E}\left(X_{i}\right)=\mu \sum_{i} w_{i}
$$

so $\hat{\mu}$ is unbiased if and only if $\sum w_{i}=1$.
(b) We have

$$
\mathbf{V}(\hat{\mu})=\sum_{i} w_{i}^{2} \sigma_{i}^{2},
$$

which should be minimized subject to the constraint $\sum_{i} w_{i}=1$. Use now e.g. Lagrange multipliers to get the result:

$$
L=\sum_{i} w_{i}^{2} \sigma_{i}^{2}-\lambda\left(\sum_{i} w_{i}-1\right),
$$

and differentiation w.r.t. w_{i} and yields

$$
2 w_{i} \sigma_{i}^{2}=\lambda \Rightarrow w_{i} \propto \sigma_{i}^{-2}
$$

so

$$
w_{i}=\frac{\sigma_{i}^{-2}}{\sum_{j} \sigma_{j}^{-2}} .
$$

(c) We have

$$
\mathbf{V}(\hat{\mu})=\sum_{i} w_{i}^{2} \sigma_{i}^{2}=\frac{\sum_{i} \sigma_{i}^{-4} \sigma_{i}^{2}}{\left(\sum \sigma_{i}^{-2}\right)^{2}}=\frac{1}{\sum_{i} \sigma_{i}^{-2}} .
$$

(d) When $\sigma_{i}^{2}=\sigma^{2}$ we have $\mathbf{V}(\hat{\mu})=\sigma^{2} / n$ which tends to zero for $n \rightarrow \infty$ whereas

$$
\operatorname{bias}(\hat{\mu})=\sum \beta_{i} / n=\bar{\beta}
$$

is equal to the average bias and

$$
\operatorname{mse}(\hat{\mu})=\sigma^{2} / n+\bar{\beta}^{2} .
$$

Therefore the bias tends to dominate the variance as n gets large, which is very unfortunate.
(e) The last question is really unfair (sorry about that) and there is plenty of room for imagination. But if, for example, σ_{i}^{2} is bounded, similar phenomena as above will prevail.
4. Estimation in the Gamma distribution
(a)

$$
c(\theta)^{-1}=\int_{0}^{\infty} x^{2} e^{-\theta x} d x=\Gamma(3) / \theta^{3}=2 / \theta^{3} .
$$

(b) We get

$$
\mathbf{E}(\tilde{\theta})=\mathbf{E}(2 / X)=\frac{2 \theta^{3}}{2} \int_{0}^{\infty} x e^{-\theta x} d x=\theta^{3} \theta^{-2} \Gamma(2)=\theta
$$

so $\tilde{\theta}$ is an unbiased estimator of θ. To get the variance we use

$$
\mathbf{E}\left(\tilde{\theta}^{2}\right)=2 \theta^{3} \int_{0}^{\infty} e^{-\theta x} d x=2 \theta^{2}
$$

so

$$
\mathbf{V}(\tilde{\theta})=2 \theta^{2}-\theta^{2}=\theta^{2} .
$$

(c) To find the Fisher information $i(\theta)$ for θ we use

$$
\frac{\partial}{\partial \theta} \log f(x ; \theta)=-x+3 / \theta, \quad-\frac{\partial^{2}}{\partial \theta^{2}} \log f(x ; \theta)=3 / \theta^{2}=i(\theta) .
$$

Thus we get

$$
\operatorname{eff}(\tilde{\theta})=\frac{\theta^{2}}{3 \theta^{2}}=1 / 3
$$

(d) We get

$$
\mathbf{E}(\hat{\mu})=\frac{\theta^{3}}{6} \int_{0}^{\infty} x^{3} e^{-\theta x} d x=\frac{\theta^{3} \Gamma(4)}{6 \theta^{4}}=1 / \theta=\mu,
$$

so $\hat{\mu}$ is an unbiased estimator of μ.
(e) Similarly

$$
\mathbf{E}\left(\hat{\mu}^{2}\right)=\frac{\theta^{3}}{18} \int_{0}^{\infty} x^{4} e^{-\theta x} d x=\frac{\theta^{3} \Gamma(5)}{\theta^{5}}=\frac{4}{3 \theta^{2}}
$$

so

$$
\mathbf{V}(\hat{\mu})=\frac{1}{3 \theta^{2}} .
$$

To calculate the Cramér-Rao bound we find for $g(\theta)=1 / \theta$ that $g^{\prime}(\theta)=$ $-\theta^{-2}$ so the lower bound is

$$
i(\theta)^{-1}\left\{g^{\prime}(\theta)^{2}\right\}=\frac{\theta^{2}}{3} \theta^{-4}=\frac{1}{3 \theta^{2}}=\mathbf{V}(\hat{\mu})
$$

