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1. Estimation in the normal distribution:

(a) We have

E(X̄) = E{(X1+· · ·+Xn)/n} = {E(X1)+· · ·+E(Xn)}/n = nµ/n = µ.

(b) The symmetry of the distribution of Xi − µ implies

E{(X − µ)(p+1)} = E{(µ−X)(p+1)}.

Combining this with the identity

X(p+1) − µ = (X − µ)(p+1) = −{(µ−X)(p+1)}

yields

E{X(p+1)−µ} = E{(X−µ)(p+1)} = E{(µ−X)(p+1)} = −E{(µ−X)(p+1)} = 0

and hence that E(µ̃) = E(X(p+1)) = µ.
Note that the argument applies to any distribution which is symmetric
around µ so the unbiasedness does not only hold in the normal case.

(c) The identity for any positive random variable

V(
√

Y ) = E(Y )− {E(
√

Y )}2

yields for Y = SSD/n where, clearly, V(
√

Y ) > 0

E(σ̂) = E{
√

(SSD/n)} <
√

E(SSD/n) = σ,

hence σ̂ is not unbiased.
(d) For n = 3, Y = SSD/σ2 follows a χ2-distribution with two degrees of

freedom, hence

E(
√

Y ) =
∫ ∞

0

√
y

1
2Γ(1)

e−y/2 dy =
23/2Γ(3/2)

2Γ(1)
=
√

2
1
2
Γ(1/2) =

√
π/2,

hence σ̃ = 2σ̂/
√

π is unbiased for σ.
(e) If we let d = (n− 1) we similarly find for general n that

E(
√

Y ) =
∫ ∞

0

√
y

yd/2−1

2d/2Γ(d/2)
e−y/2 dy =

2(d+1)/2Γ((d + 1)/2)
2d/2Γ(d/2)

,

so

c =

√
dΓ(d/2)√

2Γ((d + 1)/2)
makes cS an unbiased estimator of σ.
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2. Estimation in the uniform distribution on (0, θ)

(a) The variance of the average is

V(θ̃) = V(X̄) =
θ2

12n

as V(Xi) = θ2/12, which is seen by direct integration

E(Xi) =
∫ θ

0

1
θ
x dx = θ/2, E(X2

i ) = θ2/3, V(Xi) = θ2/3−θ2/4 = θ2/12.

(b) The likelihood function is 0 for 0 < θ < x(n) and equal to θ−n for
θ > x(n).

(c) Let U = X(n), we then have

P (U ≤ u) =
n∏
i

P (Xi ≤ u) = (u/θ)n for 0 < u < θ

so differentiation yields that U has density

f(u; θ) = nun−1θ−n for 0 < u < θ.

Direct integration now yields

E(θ̂) = E(U) =
nθ

n + 1

(d) The estimator

θ̌ =
n + 1

n
X(n)

is unbiased. Direct integration gives E(U2) = (nθ2)/(n + 2) so

V(θ̂) = V(U) =
nθ2

(n + 2)(n + 1)2

and

V(θ̌) =
θ2

n(n + 2)
.

(e) Clearly, the mean square error of θ̃ is very large compared to the mean
square error of θ̌. Even the ratio of variances of the second to the first
is

12n

n(n + 2)
=

12
n + 2

which tends to 0 for n →∞.
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The mean square error of θ̂ is

mse(θ̂) = V(θ̂) + {bias(θ̂)}2

= θ2
(

n

(n + 2)(n + 1)2
+

1
(n + 1)2

)
=

2θ2

(n + 2)(n + 1)
,

so, in terms of mean square error,

reff(θ̌ : θ̂) =
mse(θ̂)
mse(θ̌)

=
2n

n + 1

which is larger than 1 unless n = 1, so the bias-correction seems well
justified in this case.

3. Linear unbiased estimation

(a) We get

E(µ̂) = E(w1X1 + w2X2 + · · ·+ wnXn) =
∑

i

wiE(Xi) = µ
∑

i

wi

so µ̂ is unbiased if and only if
∑

wi = 1.
(b) We have

V(µ̂) =
∑

i

w2
i σ

2
i ,

which should be minimized subject to the constraint
∑

i wi = 1. Use
now e.g. Lagrange multipliers to get the result:

L =
∑

i

w2
i σ

2
i − λ(

∑
i

wi − 1),

and differentiation w.r.t. wi and yields

2wiσ
2
i = λ ⇒ wi ∝ σ−2

i

so

wi =
σ−2

i∑
j σ−2

j

.

(c) We have

V(µ̂) =
∑

i

w2
i σ

2
i =

∑
i σ

−4
i σ2

i(∑
σ−2

i

)2 =
1∑

i σ
−2
i

.

(d) When σ2
i = σ2 we have V(µ̂) = σ2/n which tends to zero for n → ∞

whereas
bias(µ̂) =

∑
βi/n = β̄

is equal to the average bias and

mse(µ̂) = σ2/n + β̄2.

Therefore the bias tends to dominate the variance as n gets large, which
is very unfortunate.
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(e) The last question is really unfair (sorry about that) and there is plenty
of room for imagination. But if, for example, σ2

i is bounded, similar
phenomena as above will prevail.

4. Estimation in the Gamma distribution

(a)

c(θ)−1 =
∫ ∞

0
x2e−θx dx = Γ(3)/θ3 = 2/θ3.

(b) We get

E(θ̃) = E(2/X) =
2θ3

2

∫ ∞

0
xe−θx dx = θ3θ−2Γ(2) = θ

so θ̃ is an unbiased estimator of θ. To get the variance we use

E(θ̃2) = 2θ3
∫ ∞

0
e−θx dx = 2θ2

so
V(θ̃) = 2θ2 − θ2 = θ2.

(c) To find the Fisher information i(θ) for θ we use

∂

∂θ
log f(x; θ) = −x + 3/θ, − ∂2

∂θ2
log f(x; θ) = 3/θ2 = i(θ).

Thus we get

eff(θ̃) =
θ2

3θ2
= 1/3.

(d) We get

E(µ̂) =
θ3

6

∫ ∞

0
x3e−θx dx =

θ3Γ(4)
6θ4

= 1/θ = µ,

so µ̂ is an unbiased estimator of µ.

(e) Similarly

E(µ̂2) =
θ3

18

∫ ∞

0
x4e−θx dx =

θ3Γ(5)
θ5

=
4

3θ2

so
V(µ̂) =

1
3θ2

.

To calculate the Cramér–Rao bound we find for g(θ) = 1/θ that g′(θ) =
−θ−2 so the lower bound is

i(θ)−1{g′(θ)2} =
θ2

3
θ−4 =

1
3θ2

= V(µ̂).

Steffen L. Lauritzen, University of Oxford October 26, 2004
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