1. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a sample from the Weibull distribution with individual densities

$$
f(x ; \theta)=\theta x^{\theta-1} e^{-x^{\theta}} \text { for } x>0
$$

where $\theta>0$ is unknown.
(a) Find the score statistic and the likelihood equation;
(b) Show that if the likelihood equation has a solution, it must be the MLE;
(c) Find an iterative method for solving the likelihood equation;
(d) Find the LRT for the null hypothesis $H_{0}: \theta=1$ vs. the alternative $H_{A}: \theta=2$.
(e) Find the maximized LRT for the null hypothesis $H_{0}: \theta=1$ vs. the alternative $H_{A}: \theta \neq 1$;
(f) Find the score test for the null hypothesis $H_{0}: \theta=1$ vs. the alternative $H_{A}: \theta \neq 1 ;$
(g) Discuss alternative large sample tests for the null hypothesis $H_{0}: \theta=1$ vs. the alternative $H_{A}: \theta \neq 1$.
2. Let $X=\left(X_{1}, \ldots, X_{k}\right)$ be independent and Poisson distributed with parameter λ_{i} as

$$
f\left(x_{i} ; \lambda_{i}\right)=\frac{\lambda_{i}^{x_{i}}}{x_{i}!} e^{-\lambda_{i}}, x_{i}=0,1, \ldots
$$

where $\lambda_{i}>0$ are unknown.
(a) Show that the MLE of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is

$$
\hat{\lambda}=\left(\hat{\lambda}_{1}, \ldots, \hat{\lambda}_{k}\right)=\left(X_{1}, \ldots, X_{k}\right)
$$

(b) Consider the composite hypothesis $H_{0}: \lambda_{i}=\alpha d_{i}, i=1, \ldots, k$, where d_{i} are known numbers and $\alpha>0$ is unknown. Show that the MLE $\hat{\hat{\lambda}}$ under this hypothesis is

$$
\hat{\hat{\lambda}}=\left\{\frac{\sum X_{i}}{\sum d_{i}} d_{1}, \ldots, \frac{\sum X_{i}}{\sum d_{i}} d_{k}\right\}
$$

(c) Find the maximized LRT statistic under this hypothesis and indicate its asymptotic distribution;
(d) Find the Wald test statistic for H_{0};
(e) Find the χ^{2} test statistic for H_{0}.
(f) Consider next the hypothesis $H_{1}: \lambda_{i}=d_{i}, i=1, \ldots, k$. Find the maximized likelihood ratio test for this hypothesis under the assumption that H_{0} is true.

