1. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be independent random variables with

$$
P\left(X_{i}=1\right)=1-P\left(X_{i}=0\right)=\frac{e^{\alpha+\beta d_{i}}}{1+e^{\alpha+\beta d_{i}}},
$$

where α and β are unknown real-valued parameters and $d=\left(d_{1}, \ldots, d_{n}\right)$ is a vector of known numbers.
This model is a linear logistic regression model and the vector d might typically describe varying doses of drug administered to different individuals and X_{i} whether individual i responds or not.
(a) Show that this is a canonical exponential family with canonical sufficient statistic

$$
t(x)=\left(\sum_{i} x_{i}, \sum_{i} x_{i} d_{i}\right) .
$$

(b) Write down the likelihood equation for the parameters α and β.
(c) Consider now the case where α is known and $\alpha=0$. Find the Fisher information for β and the asymptotic variance of $\hat{\beta}$.
(d) The likelihood equation must be solved by iterative methods. Write down the iterative step for Fisher's scoring method in the case where $\alpha=0$ is known.
(e) What is the iterative step for the Newton-Raphson method, when $\alpha=0$ is known?
(f) Write the iterative step for Fisher's method of scoring in the case where both α and β are unknown.
(g) Find the asymptotic covariance matrix of $(\hat{\alpha}, \hat{\beta})$.
2. Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ be independent Poisson random variables with

$$
\mathbf{E}\left(Y_{i}\right)=\beta+\alpha d_{i}
$$

where α and β are unknown real-valued parameters and $d=\left(d_{1}, \ldots, d_{n}\right)$ is a vector of known numbers.
This could be a model for the measured number of particles emitted by d_{i} radioactive sources, each emitting particles at the intensity of α (particles per time unit), and β is the intensity of the background radiation.

Consider now the background intensity as being known and equal to unity $\beta=1$. We wish to estimate α.
(a) Why is this not a canonical exponential family?
(b) Find the score statistic for α;
(c) Find the Fisher information for α;
(d) Write down the iterative step for solving the likelihood equation by the Newton-Raphson method;
(e) Write down the iterative step for solving the likelihood equation by Fisher's scoring method;
(f) Suppose that instead of observing Y as above, we had 'complete data' $\left(B_{i}, X_{i}\right), i=1, \ldots, n$, where B_{i} is counting the number of background emissions and X_{i} the number of emissions from the radioactive sources, so that each were independent Poisson and

$$
\mathbf{E}\left(B_{i}\right)=\beta, \mathbf{E}\left(X_{i}\right)=\alpha d_{i}, \quad Y_{i}=B_{i}+X_{i} .
$$

Find the MLE for estimating α based on complete data, assuming $\beta=1$ is known.
(g) This setup is ideal for using the EM algorithm in the case where we have only observed Y as above. Show that the E-step can be implemented through calculating $x_{i}^{*}=\mathbf{E}\left(X_{i} \mid Y_{i}\right)$, and find this conditional expectation.
(h) Describe the E-step and M-step of the EM algorithm for estimating α, assuming β is known.
(i) How are the steps of the EM algorithm if the background intensity β is unknown as well?

