1. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a sample from the Gamma distribution with parameters $\alpha>0$ and $\beta>0$ both unknown, i.e. the distribution with individual densities

$$
f(x ; \alpha, \beta)=\frac{\beta^{\alpha} x^{\alpha-1}}{\Gamma(\alpha)} e^{-\beta x}, \quad x>0
$$

(a) Show that the asymptotic covariance matrix of $(\hat{\alpha}, \hat{\beta})$ is equal to

$$
\frac{1}{n\left\{\alpha \psi^{\prime}(\alpha)-1\right\}}\left(\begin{array}{cc}
\alpha & \beta \\
\beta & \beta^{2} \psi^{\prime}(\alpha)
\end{array}\right)
$$

where $\psi^{\prime}(\alpha)$ is the Trigamma function.
Take care: The original overheads from Lecture 6 had an incorrect sign in the Gamma example. The overheads which are on the web now should be correct on this point.
(b) Show that $\hat{\alpha}$ and $\hat{\gamma}$ are asymptotically independent, where

$$
\gamma=\mathbf{E}(X)=\alpha / \beta
$$

Hint: Use the delta method and the result under (a) above.
2. Consider a sample $X=\left(X_{1}, \ldots, X_{n}\right)$ from a normal distribution $\mathcal{N}\left(\mu, \mu^{2}\right)$, where $\mu>0$ is unknown. This corresponds to the coefficient of variation $\sqrt{\mathbf{V}(X)} / \mathbf{E}(X)$ being known and equal to 1.
(a) Find the score function for μ;
(b) Show that the likelihood equation has a unique root $\hat{\mu}$ within the parameter space unless X_{i} are all equal to zero;
(c) Calculate the observed information at $\hat{\mu}$ and use this to show that the root $\hat{\mu}$ is indeed the MLE of μ;
(d) Show that the asymptotic variance of $\hat{\mu}$ is equal to $\mu^{2} /(3 n)$. You may without proof assume that the necessary regularity conditions are satisfied;
(e) Consider the estimator

$$
\tilde{\mu}=\{\bar{X}+2 \sqrt{S S D /(n-1)}\} / 3
$$

where $S S D$ is the S um of S quared D eviations

$$
S S D=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Show that also $\tilde{\mu}$ is asymptotically unbiased and asymptotically efficient;
Hint: Use the delta method on the function $g(x)=\sqrt{x}$.
3. Consider a sample $X=\left(X_{1}, \ldots, X_{n}\right)$ from a distribution with an individual density satisfying Cramér's conditions in the one-dimensional case and assume that the MLE $\hat{\theta}$ is a consistent root of the likelihood equation so that $\hat{\theta} \xrightarrow{P} \theta_{0}$ where θ_{0} is the true value of the parameter.

You may now without proof use the fact that these conditions imply that the Fisher information $i(\theta)$ is continuous at θ_{0}.
(a) Show that

$$
\sqrt{n i(\hat{\theta})}\left(\hat{\theta}-\theta_{0}\right) \stackrel{\mathrm{a}}{\sim} \mathcal{N}(0,1)
$$

Hint: Use Slutsky's theorem and the continuity of $i(\theta)$ at θ_{0};
(b) Show that

$$
j_{n}(\hat{\theta}) / n=\frac{-1}{n} \sum_{k=1}^{n} \frac{\partial^{2}}{\partial \theta^{2}} \log f\left(X_{k} ; \hat{\theta}\right) \xrightarrow{P} i\left(\theta_{0}\right)
$$

Hint: Use Taylor's theorem and the boundedness of the third derivative.
(c) Show that

$$
\sqrt{j_{n}(\hat{\theta})}\left(\hat{\theta}-\theta_{0}\right) \stackrel{\mathrm{a}}{\sim} \mathcal{N}(0,1)
$$

Hint: Use Slutsky's theorem and the result under (b).

