1. Let $X = (X_1, \ldots, X_n)$ be a sample from the Gamma distribution with parameters $\alpha > 0$ and $\beta > 0$ both unknown, i.e. the distribution with individual densities

$$f(x; \alpha, \beta) = \frac{\beta^{\alpha} x^{\alpha-1}}{\Gamma(\alpha)} e^{-\beta x}, \quad x > 0.$$

(a) Show that the asymptotic covariance matrix of $(\hat{\alpha}, \hat{\beta})$ is equal to

$$\frac{1}{n\{\alpha\psi'(\alpha)-1\}}\left(\begin{array}{cc}\alpha&\beta\\\beta&\beta^2\psi'(\alpha)\end{array}\right),$$

where $\psi'(\alpha)$ is the Trigamma function.

Take care: The original overheads from Lecture 6 had an incorrect sign in the Gamma example. The overheads which are on the web now should be correct on this point.

(b) Show that $\hat{\alpha}$ and $\hat{\gamma}$ are asymptotically independent, where

$$\gamma = \mathbf{E}(X) = \alpha/\beta.$$

Hint: Use the delta method and the result under (a) above.

- 2. Consider a sample $X = (X_1, \ldots, X_n)$ from a normal distribution $\mathcal{N}(\mu, \mu^2)$, where $\mu > 0$ is unknown. This corresponds to the coefficient of variation $\sqrt{\mathbf{V}(X)}/\mathbf{E}(X)$ being known and equal to 1.
 - (a) Find the score function for μ ;
 - (b) Show that the likelihood equation has a unique root $\hat{\mu}$ within the parameter space unless X_i are all equal to zero;
 - (c) Calculate the observed information at $\hat{\mu}$ and use this to show that the root $\hat{\mu}$ is indeed the MLE of μ ;
 - (d) Show that the asymptotic variance of $\hat{\mu}$ is equal to $\mu^2/(3n)$. You may without proof assume that the necessary regularity conditions are satisfied;
 - (e) Consider the estimator

$$\tilde{\mu} = \left\{ \bar{X} + 2\sqrt{SSD/(n-1)} \right\}/3,$$

where SSD is the Sum of Squared Deviations

$$SSD = \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

Show that also $\tilde{\mu}$ is asymptotically unbiased and asymptotically efficient;

Hint: Use the delta method on the function $g(x) = \sqrt{x}$.

3. Consider a sample $X = (X_1, \ldots, X_n)$ from a distribution with an individual density satisfying Cramér's conditions in the one-dimensional case and assume that the MLE $\hat{\theta}$ is a consistent root of the likelihood equation so that $\hat{\theta} \xrightarrow{P} \theta_0$ where θ_0 is the true value of the parameter.

You may now without proof use the fact that these conditions imply that the Fisher information $i(\theta)$ is continuous at θ_0 .

(a) Show that

$$\sqrt{ni(\hat{\theta})}(\hat{\theta}-\theta_0) \stackrel{\mathrm{a}}{\sim} \mathcal{N}(0,1).$$

Hint: Use Slutsky's theorem and the continuity of $i(\theta)$ at θ_0 ;

(b) Show that

$$j_n(\hat{\theta})/n = \frac{-1}{n} \sum_{k=1}^n \frac{\partial^2}{\partial \theta^2} \log f(X_k; \hat{\theta}) \xrightarrow{P} i(\theta_0).$$

Hint: Use Taylor's theorem and the boundedness of the third derivative.

(c) Show that

$$\sqrt{j_n(\hat{\theta})}(\hat{\theta}-\theta_0) \stackrel{\mathrm{a}}{\sim} \mathcal{N}(0,1).$$

Hint: Use Slutsky's theorem and the result under (b).