1. Let X be binomially distributed with parameter p so that

$$
f(x ; p)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad 0<p<1
$$

where p is unknown.
(a) Show this is a canonical exponential family with canonical parameter $\theta=\log \{p /(1-p)\} ;$
(b) Find the \log-normalizing function $c(\theta)$;
(c) Find the mean and variance of the canonical statistic by differentiation;
(d) Find the mean value parameter;
(e) Write down the maximum likelihood equation and its solution for p.
2. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be independent and Poisson distributed with

$$
\mathbf{E}\left(X_{j}\right)=\lambda N_{j}
$$

where $\lambda>0$ is unknown and N_{j} are known constants. Models of this type arise in risk studies where N_{j} are the number of individuals at risk in group j, X_{j} the number of events, e.g. accidents or casualties, and λ is the risk rate.
(a) Show that the above model defines a canonical exponential family with canonical parameter $\log \lambda$;
(b) Identify the canonical sufficient statistic and find its mean and variance;
(c) Find the mean value parameter;
(d) Find the maximum likelihood estimate $\hat{\lambda}$ of λ;
(e) Find the Fisher information for λ and the variance of $\hat{\lambda}$.
3. Consider a random sample of size n from a population of individuals, classified according to their genotypes in a biallelic system $X=\left(X_{A A}, X_{A a}, X_{a a}\right)$ where $X_{A A}$ denotes the number of individuals with genotype $A A$ etc. The sample then follows a multinomial distribution

$$
f(x ; p)=\binom{n}{x_{A A}, x_{A a}, x_{a a}} p_{A A}^{x_{A A}} p_{A a}^{x_{A a}} p_{a a}^{x_{a a}} .
$$

Under the assumption of so-called Hardy-Weinberg equilibrium, the individual probabilities are given as

$$
p_{A A}=\mu^{2}, \quad p_{A a}=2 \mu(1-\mu), \quad p_{a a}=(1-\mu)^{2},
$$

where $0<\mu<1$.
(a) Show that the assumption of Hardy-Weinberg equilbrium makes this a linear exponential family with canonical sufficient statistic equal to $t(X)=2 X_{A A}+X_{A a}$;
(b) Find the canonical parameter;
(c) Find the log-normalizing function;
(d) Find the mean value parameter;
(e) Write down the likelihood equation and find the MLE for μ.
4. Let $f(x)$ be any non-negative function on the real line and define

$$
f(x ; \theta)=f(x) e^{\theta x-c(\theta)}, \theta \in \Theta
$$

where

$$
\Theta=\left\{\theta \mid \int f(x) e^{\theta x} d x<\infty\right\}
$$

If $\Theta \neq \emptyset$ this is known as the natural exponential family generated by f and most distributions are therefore 'members of an exponential family'.
(a) Find Θ in the case where

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{1+x^{4}} & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

(b) Show that the likelihood equation has no solution if $x>1 / \sqrt{2}$.

Hint: Find $\mathbf{E}_{0}(X)$ by direct integration and use that the mean value mapping is everywhere strictly increasing.
(c) What is the MLE of θ for $x>1 / \sqrt{2}$?
(d) Consider next the family generated by

$$
g(x)=\left\{\begin{array}{cc}
\frac{1}{1+x^{2}} & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

and find also here the canonical parameter space.
(e) Show that the likelihood equation always has a solution in the family generated by $g(x)$.
Hint: Use that the function $x /\left(1+x^{2}\right)$ is not integrable over the entire half-line $(0, \infty)$.

