1. Let $X = (X_1, \ldots, X_n)$ be a sample from an *exponential distribution* with individual densities

$$f(x;\theta) = \frac{1}{\theta}e^{-x/\theta}, x > 0,$$

where $\theta > 0$ is unknown.

- (a) Show that $\tilde{\theta}^2 = X_1^2/2$ is an unbiased estimator of $g(\theta) = \theta^2$;
- (b) Show that $t(X) = \sum X_i$ is sufficient for θ ;
- (c) Rao-Blackwellize $\tilde{\theta}^2$ to find an improved unbiased estimator of $g(\theta)$; *Hint:* You may use without proof that the conditional distribution of $U = X_1/(\sum X_i)$ follows a Beta-distribution $\mathcal{B}(1, n-1)$, where $\mathcal{B}(\alpha, \beta)$ is the distribution with density

$$f(t; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} t^{\alpha - 1} (1 - t)^{\beta - 1}, 0 < t < 1.$$

- (d) Is the Rao–Blackwellized estimator efficient?
- (e) Find the MLE of θ^2 and compare the mean square error of the two estimates.
- 2. Let $X = (X_1, \ldots, X_n)$ be independent with all individual densities $f_j(x_j; \theta)$ for $X_j, j = 1, \ldots, n$ satisfying usual conditions of regularity and smoothness. Let $i_j(\theta)$ denote the Fisher information about θ in X_j and let $i(\theta)$ be the Fisher information in X.
 - (a) Show that the Fisher information is *additive* over independent experiments:

$$i(\theta) = i_1(\theta) + \dots + i_n(\theta).$$

(b) Next, let Y = t(X) be a transformation of X and denote the Fisher information about θ by $i_Y(\theta)$. Similarly, let $i_{X|y}(\theta)$ denote the Fisher information conditionally on Y = y and $i_{X|Y}(\theta)$ its expectation. Show, at least in the discrete case, that

$$i(\theta) = i_{X|Y}(\theta) + i_Y(\theta).$$

(c) Using the result under (b), show that

$$i(\theta) \ge i_Y(\theta)$$

with equality if and only if Y = t(X) is sufficient for θ .

The quantity $i_{X|Y}(\theta)$ is known as the loss of information associated with the transformation Y = t(X). A sufficient transformation does not lose information in this sense.

Hint: Use that the information satisfies

$$i(\theta) = \mathbf{E}_{\theta} \left\{ -\frac{\partial^2}{\partial \theta^2} \log f(X;\theta) \right\}$$

and factorize the density of X appropriately.

3. Let $X = (X_1, ..., X_n)$ be a sample of size *n* from the uniform distribution on the interval $(\mu - \delta, \mu + \delta)$

$$f(x; \mu, \delta) = (2\delta)^{-1}$$
 for $\mu - \delta < x < \mu + \delta$ and 0 otherwise.

and consider $\theta = (\delta, \mu)$ with $\delta > 0$ and μ both unknown.

- (a) Show that $(X^{(1)}, X^{(n)})$ is minimal sufficient for θ ;
- (b) Estimate $\theta = (\delta, \mu)$ by the method of moments and denote the estimator by $\tilde{\theta} = (\tilde{\mu}, \tilde{\delta})$;
- (c) Show that the maximum likelihood estimator $\hat{\theta}$ is given by

$$\hat{\mu} = (X_{(1)} + X_{(n)})/2, \quad \hat{\delta} = (X_{(1)} - X_{(n)})/2;$$

- (d) Show that the MLE of μ is unbiased;
- (e) Find the relative efficiency of $\tilde{\mu}$ to $\hat{\mu}$.
- (f) Consider now the case where $\delta = 1$ is *known*. Show in this case that $A = (X_{(1)} X_{(n)})/2$ is ancillary.
- (g) Find the conditional density of the estimator $\hat{\mu} = (X_{(1)} + X_{(n)})/2$, given A = a under the assumption $\delta = 1$.