1. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be independent and identically normally distributed as $\mathcal{N}\left(\mu, \sigma^{2}\right)$, where μ and σ^{2} are both unknown, and assume $n=2 p+1$ is odd.

Define the estimators

$$
\hat{\mu}=\bar{X}=\left(X_{1}+\cdots+X_{n}\right) / n, \quad \tilde{\mu}=\operatorname{med}(X)=X_{(p+1)}
$$

and

$$
\hat{\sigma}=S=\sqrt{\sum_{1}^{n}\left(X_{i}-\bar{X}\right)^{2} /(n-1)}
$$

(a) Show that $\hat{\mu}$ is an unbiased estimator of μ;
(b) Show that $\tilde{\mu}$ is an unbiased estimator of μ;

Hint: You should exploit the symmetry of the distribution of $X_{i}-\mu$ and the identity

$$
X_{(p+1)}-\mu=(X-\mu)_{(p+1)}=-\left\{(\mu-X)_{(p+1)}\right\}
$$

(c) Show that $\hat{\sigma}$ is not an unbiased estimator of σ;
(d) Find an unbiased estimator of σ of the form $\check{\sigma}=c S$ in the case $p=1$ ($n=3$).
Hint: The Gamma function

$$
\Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t
$$

has the properties

$$
\Gamma(\alpha+1)=\alpha \Gamma(\alpha) \text { and } \Gamma(1 / 2)=\sqrt{\pi}
$$

(e) Same as in (d), but for general n.
2. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a sample of size n from the uniform distribution on the interval $(0, \theta)$ with density for a single observation being

$$
f(x ; \theta)=1 / \theta \text { for } 0<x<\theta \text { and } 0 \text { otherwise }
$$

and consider $\theta>0$ unknown.
(a) Find the variance of the estimator $\tilde{\theta}=\bar{X}$;
(b) Sketch the likelihood function;
(c) Find the mean of the (maximum likelihood) estimator $\hat{\theta}=X_{(n)}$, i.e. the largest observation;
(d) Find an unbiased estimator of the form $\check{\theta}=c X_{(n)}$ and calculate its variance;
(e) Compare the mean square errors of $\hat{\theta}, \tilde{\theta}$, and $\check{\theta}$.
3. Consider X_{1}, \ldots, X_{n} to be independent with means $\mathbf{E}\left(X_{i}\right)=\mu+\beta_{i}$ and variances $\mathbf{V}\left(X_{i}\right)=\sigma_{i}^{2}$. Such a situation could for example occur when X_{i} are estimators of μ obtained from independent sources and β_{i} is the bias of the estimator X_{i}.
We now consider pooling the estimators of μ into a common estimator by using a linear combination:

$$
\hat{\mu}=w_{1} X_{1}+w_{2} X_{2}+\cdots+w_{n} X_{n}
$$

(a) If the estimators are unbiased, i.e. if $\beta_{i}=0$ for all i, show that a linear combination $\hat{\mu}$ as above is unbiased if and only if $\sum w_{i}=1$;
(b) In the case when $\beta_{i}=0$ for all i, show that an unbiased linear combination has minimum variance when the weights w_{i} are inversely proportional to the variances σ_{i}^{2};
(c) Show that the variance of $\hat{\mu}$ for optimal weights w_{i} is $\mathbf{V}(\hat{\mu})=1 / \sum_{i} \sigma_{i}^{-2}$;
(d) Next, consider the case where the estimators may be biased so we could have $\beta_{i} \neq 0$. Find the mean square error of the optimal linear combination obtained above, and compare its behaviour as $n \rightarrow \infty$ in the biased and unbiased case, when $\sigma_{i}^{2}=\sigma^{2}, i=1, \ldots, n$;
(e) Same as (d), but for a general sequence σ_{i}^{2}.
4. Let X have density

$$
f(x ; \theta)=c(\theta) x^{2} e^{-\theta x}, x>0
$$

where $\theta>0$ is assumed unknown.
(a) Show that $c(\theta)=\theta^{3} / 2$;
(b) Show that $\tilde{\theta}=2 / X$ is an unbiased estimator of θ and find its variance;
(c) Find the Fisher information $i(\theta)$ for the parameter θ and compare the variance of $\tilde{\theta}$ to the Cramér-Rao lower bound;
(d) Let now $\mu=1 / \theta$ and show that $\hat{\mu}=X / 3$ is an unbiased estimator of μ;
(e) Find the variance of $\hat{\mu}$ and show that it attains the Cramér-Rao bound.

Hint: Use standard properties of the Gamma function as in Question 1.

