The Method of Scoring. The EM Algorithm

BS2 Statistical Inference, Lecture 9 Michaelmas Term 2004

Steffen Lauritzen, University of Oxford; November 8, 2004

The method of scoring

The iteration

$$
\theta \leftarrow \theta+j_{n}(\theta)^{-1} S(\theta)
$$

has a tendency to be unstable for many reasons, one of them being that $j_{n}(\theta)$ may be negative unless θ already is very close to to the MLE $\hat{\theta}$. In addition, $j(\theta)$ might sometimes be hard to calculate.
R. A. Fisher introduced the method of scoring which simply replaces the observed second derivative with its expectation to yield the iteration

$$
\theta \leftarrow \theta+i_{n}(\theta)^{-1} S(\theta)
$$

which in the case of independent and identically distributed
observations gives

$$
\theta \leftarrow \theta+i(\theta)^{-1} S(\theta) / n
$$

In many cases, $i(\theta)$ is easier to calculate and $i(\theta)$ is always positive.
In canonical exponential families we get

$$
j(\theta)=\frac{\partial^{2}}{\partial \theta^{2}}\{c(\theta)-\theta t(X)\}=c^{\prime \prime}(\theta)=i(\theta)
$$

so for canonical exponential families the method of scoring and the method of Newton-Raphson coincide.

If we let $v(\theta)=c^{\prime \prime}(\theta)$ the iteration becomes

$$
\theta \leftarrow \theta+v(\theta)^{-1} S(\theta) / n .
$$

The identity of Newton-Raphson and the method of scoring only holds for the canonical parameter. If $\theta=g(\mu)$

$$
\begin{aligned}
j(\mu) & =\frac{\partial^{2}}{\partial \mu^{2}}\{c(g(\mu))-g(\mu) t(X)\} \\
& =\frac{\partial}{\partial \mu}\left[g^{\prime}(\mu) \tau\{g(\mu)\}-g^{\prime}(\mu) t(X)\right] \\
& =v\{g(\mu)\}\left\{g^{\prime}(\mu)\right\}^{2}+g^{\prime \prime}(\mu)[\tau\{g(\mu)\}-t(X)] .
\end{aligned}
$$

The method of scoring is simpler because the last term has expectation equal to 0 :

$$
i(\mu)=\mathbf{E}\{j(\mu)\}=v\{g(\mu)\}\left\{g^{\prime}(\mu)\right\}^{2} .
$$

The method of scoring is used in the glim procedure for estimation in so-called generalised linear models.

The EM algorithm

The EM algorithm is a supplement or alternative to Newton-Raphson in cases where the complications in calculating the MLE are due to incomplete observation.

Data (X, Y) are the complete data whereas only incomplete data $Y=y$ are observed.

The complete data log-likelihood is:

$$
l(\theta)=\log L(\theta ; x, y)=\log f(x, y ; \theta)
$$

The marginal log-likelihood or incomplete data log-likelihood is based on y alone and is equal to

$$
l_{y}(\theta)=\log L(\theta ; y)=\log f(y ; \theta)
$$

We wish to maximize l_{y} in θ but l_{y} is typically quite unpleasant:

$$
l_{y}(\theta)=\log \int f(x, y ; \theta) d x
$$

The EM algorithm is a method of maximizing the latter iteratively and alternates between two steps, one known as the E-step and one as the M-step, to be detailed below.

We let θ^{*} be and arbitrary but fixed value, typically the value of θ at the current iteration.

The E-step calculates the expected complete data log-likelihood ratio $q\left(\theta \mid \theta^{*}\right)$:

$$
\begin{aligned}
q\left(\theta \mid \theta^{*}\right) & =\mathbf{E}_{\theta^{*}}\left[\left.\log \frac{f(X, y ; \theta)}{f\left(X, y ; \theta^{*}\right)} \right\rvert\, Y=y\right] \\
& =\int \log \frac{f(x, y ; \theta)}{f\left(x, y ; \theta^{*}\right)} f\left(x \mid y ; \theta^{*}\right) d x
\end{aligned}
$$

The M-step maximizes $q\left(\theta \mid \theta^{*}\right)$ in θ for for fixed θ^{*}, i.e. calculates

$$
\theta^{* *}=\arg \max _{\theta} q\left(\theta \mid \theta^{*}\right)
$$

We will show that after an E-step and subsequent M-step, the likelihood function has never decreased.

Kullback-Leibler divergence

The KL divergence between f and g is

$$
K L(f: g)=\int f(x) \log \frac{f(x)}{g(x)} d x
$$

Also known as relative entropy of g with respect to f.
Since $-\log x$ is a convex function, Jensen's inequality gives
$K L(f: g) \geq 0$ and $K L(f: g)=0$ if and only if $f=g$, since
$K L(f: g)=\int f(x) \log \frac{f(x)}{g(x)} d x \geq-\log \int f(x) \frac{g(x)}{f(x)} d x=0$,
so KL divergence defines an (asymmetric) distance measure between probability distributions.

Expected and marginal log-likelihood

Since $f(x \mid y ; \theta)=f\{(x, y) ; \theta\} / f(y ; \theta)$ we have

$$
\begin{aligned}
q\left(\theta \mid \theta^{*}\right)= & \int \log \frac{f(y ; \theta) f(x \mid y ; \theta)}{f\left(y ; \theta^{*}\right) f\left(x \mid y ; \theta^{*}\right)} f\left(x \mid y ; \theta^{*}\right) d x \\
= & \log f(y ; \theta)-\log f\left(y ; \theta^{*}\right) \\
& +\int \log \frac{f(x \mid y ; \theta)}{f\left(x \mid y ; \theta^{*}\right)} f\left(x \mid y ; \theta^{*}\right) d x \\
= & l_{y}(\theta)-l_{y}\left(\theta^{*}\right)-K L\left(f_{\theta^{*}}^{y}: f_{\theta}^{y}\right) .
\end{aligned}
$$

Since the KL-divergence is minimized for $\theta=\theta^{*}$, differentiation of the above expression yields

$$
\left.\frac{\partial}{\partial \theta} q\left(\theta \mid \theta^{*}\right)\right|_{\theta=\theta^{*}}=\left.\frac{\partial}{\partial \theta} l_{y}(\theta)\right|_{\theta=\theta^{*}}
$$

Let now $\theta_{0}=\theta^{*}$ and define the iteration

$$
\theta_{n+1}=\arg \max _{\theta} q\left(\theta \mid \theta_{n}\right) .
$$

Then

$$
\begin{aligned}
l_{y}\left(\theta_{n+1}\right) & =l_{y}\left(\theta_{n}\right)+q\left(\theta_{n+1} \mid \theta_{n}\right)+K L\left(f_{\theta_{n+1}}^{y}: f_{\theta_{n}}^{y}\right) \\
& \geq l_{y}\left(\theta_{n}\right)+0+0 .
\end{aligned}
$$

So the log-likelihood never decreases after a combined E-step and M-step.

It follows that any limit point must be a saddle point or a local maximum of the likelihood function.

The picture on the next overhead should show it all.

Expected and complete data likelihood

