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The method of scoring

The iteration
θ ← θ + jn(θ)−1S(θ)

has a tendency to be unstable for many reasons, one of
them being that jn(θ) may be negative unless θ already is

very close to to the MLE θ̂. In addition, j(θ) might
sometimes be hard to calculate.

R. A. Fisher introduced the method of scoring which simply
replaces the observed second derivative with its expectation
to yield the iteration

θ ← θ + in(θ)−1S(θ)

which in the case of independent and identically distributed
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observations gives

θ ← θ + i(θ)−1S(θ)/n.

In many cases, i(θ) is easier to calculate and i(θ) is always
positive.

In canonical exponential families we get

j(θ) =
∂2

∂θ2
{c(θ)− θt(X)} = c′′(θ) = i(θ)

so for canonical exponential families the method of scoring
and the method of Newton–Raphson coincide.

If we let v(θ) = c′′(θ) the iteration becomes

θ ← θ + v(θ)−1S(θ)/n.
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The identity of Newton–Raphson and the method of
scoring only holds for the canonical parameter. If θ = g(µ)

j(µ) =
∂2

∂µ2
{c(g(µ))− g(µ)t(X)}

=
∂

∂µ
[g′(µ)τ{g(µ)} − g′(µ)t(X)]

= v{g(µ)}{g′(µ)}2 + g′′(µ) [τ{g(µ)} − t(X)] .

The method of scoring is simpler because the last term has
expectation equal to 0:

i(µ) = E{j(µ)} = v{g(µ)}{g′(µ)}2.

The method of scoring is used in the glim procedure for
estimation in so-called generalised linear models.
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The EM algorithm

The EM algorithm is a supplement or alternative to
Newton–Raphson in cases where the complications in
calculating the MLE are due to incomplete observation.

Data (X, Y ) are the complete data whereas only
incomplete data Y = y are observed.

The complete data log-likelihood is:

l(θ) = log L(θ;x, y) = log f(x, y; θ).

The marginal log-likelihood or incomplete data
log-likelihood is based on y alone and is equal to

ly(θ) = log L(θ; y) = log f(y; θ).
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We wish to maximize ly in θ but ly is typically quite
unpleasant:

ly(θ) = log
∫

f(x, y; θ) dx.

The EM algorithm is a method of maximizing the latter
iteratively and alternates between two steps, one known as
the E-step and one as the M-step, to be detailed below.

We let θ∗ be and arbitrary but fixed value, typically the
value of θ at the current iteration.

The E-step calculates the expected complete data
log-likelihood ratio q(θ | θ∗):
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q(θ | θ∗) = Eθ∗

[
log

f(X, y; θ)
f(X, y; θ∗)

|Y = y

]
=

∫
log

f(x, y; θ)
f(x, y; θ∗)

f(x | y; θ∗) dx.

The M-step maximizes q(θ | θ∗) in θ for for fixed θ∗, i.e.
calculates

θ∗∗ = arg max
θ

q(θ | θ∗).

We will show that after an E-step and subsequent M-step,
the likelihood function has never decreased.
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Kullback-Leibler divergence

The KL divergence between f and g is

KL(f : g) =
∫

f(x) log
f(x)
g(x)

dx.

Also known as relative entropy of g with respect to f .

Since − log x is a convex function, Jensen’s inequality gives

KL(f : g) ≥ 0 and KL(f : g) = 0 if and only if f = g,
since

KL(f : g) =
∫

f(x) log
f(x)
g(x)

dx ≥ − log
∫

f(x)
g(x)
f(x)

dx = 0,

so KL divergence defines an (asymmetric) distance measure
between probability distributions.
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Expected and marginal log-likelihood

Since f(x | y; θ) = f{(x, y); θ}/f(y; θ) we have

q(θ | θ∗) =
∫

log
f(y; θ)f(x | y; θ)

f(y; θ∗)f(x | y; θ∗)
f(x | y; θ∗) dx

= log f(y; θ)− log f(y; θ∗)

+
∫

log
f(x | y; θ)
f(x | y; θ∗)

f(x | y; θ∗) dx

= ly(θ)− ly(θ∗)−KL(fy
θ∗ : fy

θ ).

Since the KL-divergence is minimized for θ = θ∗,
differentiation of the above expression yields

∂

∂θ
q(θ | θ∗)

∣∣∣∣
θ=θ∗

=
∂

∂θ
ly(θ)

∣∣∣∣
θ=θ∗

.
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Let now θ0 = θ∗ and define the iteration

θn+1 = arg max
θ

q(θ | θn).

Then

ly(θn+1) = ly(θn) + q(θn+1 | θn) + KL(fy
θn+1

: fy
θn

)

≥ ly(θn) + 0 + 0.

So the log-likelihood never decreases after a combined
E-step and M-step.

It follows that any limit point must be a saddle point or a
local maximum of the likelihood function.

The picture on the next overhead should show it all.
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Expected and complete data likelihood

-

6













�

∇ly(θ∗)

KL(fy
θ∗ : fy
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q(θ | θ∗)
θ
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ly(θ)− ly(θ∗) = q(θ | θ∗) + KL(fy
θ∗ : fy

θ )

∇ly(θ∗) =
∂

∂θ
ly(θ)

∣∣∣∣
θ=θ∗

=
∂

∂θ
q(θ | θ∗)

∣∣∣∣
θ=θ∗

.
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