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The iteration
0 — 0+ ju(0)"15(0)

has a tendency to be unstable for many reasons, one of
them being that j,,(6) may be negative unless 6 already is
very close to to the MLE 6. In addition, j(#) might
sometimes be hard to calculate.

R. A. Fisher introduced the method of scoring which simply
replaces the observed second derivative with its expectation
to yield the iteration

0 —0+i,(0)715(0)

which in the case of independent and identically distributed



observations gives
0 —0+i(0)71S(0)/n.

In many cases, (6) is easier to calculate and i(0) is always
positive.

In canonical exponential families we get

82
7(0) = 575 {c(6) = 6H(X)} = '(6) = i(6)

so for canonical exponential families the method of scoring
and the method of Newton—Raphson coincide.

If we let v(6) = ¢”’(0) the iteration becomes

0 — 0 +v(0)"1S(0)/n.



The identity of Newton—Raphson and the method of
scoring only holds for the canonical parameter. If 6 = g(u)

i) = %{C(g(u))*g(u)t()ﬂ}

- % 19 ()7 {g()} — g/ (u)t(X)
= v{g(WHg (W)} + 9" (1) [r{g(p)} — t(X)].

The method of scoring is simpler because the last term has
expectation equal to 0:

i(p) = E{j(n)} = v{g(w) Hg (n)}>.

The method of scoring is used in the glim procedure for
estimation in so-called generalised linear models.



The EM algorithm

The EM algorithm is a supplement or alternative to
Newton—Raphson in cases where the complications in
calculating the MLE are due to incomplete observation.

Data (X,Y) are the complete data whereas only
incomplete data'Y = y are observed.

The complete data log-likelihood is:
1(0) =log L(6; x,y) = log f(z,y;0).

The marginal log-likelihood or incomplete data
log-likelihood is based on y alone and is equal to

l,(0) =log L(0;y) = log f(y;6).



We wish to maximize I, in 6 but [, is typically quite
unpleasant:

L, (0) = 1og/f(x,y;9) dx.

The EM algorithm is a method of maximizing the latter
iteratively and alternates between two steps, one known as
the E-step and one as the M-step, to be detailed below.

We let 6* be and arbitrary but fixed value, typically the
value of # at the current iteration.

The E-step calculates the expected complete data
log-likelihood ratio q(6 | 0*):



o fXy0)
q0]10*) = Eg- [logw|Y

_ f(z,y:0) g+
= /logmf(ﬂy,ﬁ ) dz.

The M-step maximizes ¢(6 | 6*) in 6 for for fixed 6*, i.e.
calculates
0" = arg max q(616%).

We will show that after an E-step and subsequent M-step,
the likelihood function has never decreased.



Kullback-Leibler divergence
The KL divergence between f and g is

L9 = [ @ 1og§g§ da

Also known as relative entropy of g with respect to f.
Since —log  is a convex function, Jensen's inequality gives

(L(f:9)>0and KL(f:g)=0ifand only if f =g,

since
Lt 0= [ fa)tos D de = —ox [ )5 e =0,

so KL divergence defines an (asymmetrlc) distance measure
between probability distributions.



Since f(x|y; 6) = f{(x,y): 6}/ f(4:6) we have

A = [1oe JWO(@]y:0) o
016) = [1o8 7o e ey 1904

= log f(y;0) — log f(y;0")
f(x]y;0) g
+/1ogmf(x|y79 ) dx
= 1,(0) — 1,(0") — KL(f}. : f}).

Since the KL-divergence is minimized for § = 6*,
differentiation of the above expression yields

9, )

(@167 = o5
0—=0* 30 Y

%q 0—=0*




Let now 6y = 6* and define the iteration
Oni1 = arg mGaXQ(Q |6n).
Then

ly(0n+1) = ly(en) + Q<9n+1 ‘an) + KL(fgn_H : fgn)
> 1y(0,)+040.

So the log-likelihood never decreases after a combined
E-step and M-step.

It follows that any limit point must be a saddle point or a
local maximum of the likelihood function.

The picture on the next overhead should show it all.



Expected and complete data likelihood

KL(fY. : £1) > 0
VZ'U(H*)
1,(0) — 1,(6")
4(016%)
o* 0
1(6) — 1,(6%) = g(8]6°) + KL(fL. - f2)
i, 6% = 2 0 616%)
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