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Asymptotics of MLE in general case

First, use Taylor’s theorem on the likelihood equation

0 = S(θ̂) = S(θ)− j(θ)(θ̂ − θ) + j′(θ∗)(θ̂ − θ)2/2,

rearrange the equation to

(θ̂ − θ){j(θ)− j′(θ∗)(θ̂ − θ)/2} = S(θ),

solve for (θ̂ − θ) and multiply with
√

n to yield

√
n(θ̂ − θ) =

S(θ)/
√

n

j(θ)/n− j′(θ∗)(θ̂ − θ)/2n
.

By the Law of Large Numbers, j(θ)/n
P→ i(θ).

2



By the Central Limit Theorem

S(θ)/
√

n =
√

n

{
1
n

∑
Si(θ)

}
D→ N{0, i(θ)}.

Assume that for an individual observation,
|l′′′(x; t)| < M(x) for |t− θ| < δ, where Eθ{M(X)} <∞
and that θ̂ is consistent, i.e. that θ̂

P→ θ.

It then holds for sufficiently large n that

|j′(θ∗)(θ̂ − θ)/2n| ≤ 1
2n

∑
M(Xi)|θ̂ − θ| P→ 0.

Slutsky’s theorems now yields

θ̂n
a∼ N{θ, i(θ)−1i(θ)i(θ)−1/n} = N{θ, i(θ)−1/n}.
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Cramér’s conditions

The precise conditions for the above argument to hold are

1. Θ is an open subset of the real line;

2. A = {x | f(x; θ) > 0} does not depend on θ:

3. The log-likelihood function is three times
continuously differentiable so that for some δ > 0 and
all t with |θ − t| < δ, we have l(i)(x; t) < Mi(x),
where Eθ{Mi(X)} <∞;

4. i(θ) = −E{l′′(θ)} is positive.

The first two conditions ensure that there are no problems
with defining derivatives.
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The boundedness of the derivatives implies that integration
and differentiation can be interchanged and that the
remainder term in the Taylor expansion of the likelihood
equation is negligble.

The assumption of positive information ensures we can
divide when solving the equation for θ̂.
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Consistency of the MLE

Cramér’s conditions imply by themselves that the MLE is
consistent, more precisely that there is at least one
consistent, asymptotically normal, and efficient root θ̂ to
the likelihood equation.

The heuristics of the argument is as follows. Fix θ at the
true value and divide the equation for θ̂ everywhere by n to
obtain

0 = S(θ)/n− j(θ)/n(θ̂ − θ) +
1
2n

j′(θ∗)(θ̂ − θ)2.

Let x = θ̂ − θ. The equation then becomes

0 = an + bnx + cnx2
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where an
P→ 0, bn

P→ b < 0 and |cn| < dn
P→ d is bounded.

With a little care and precision it can now be shown that
for any ε > 0, n can be chosen large enough for this
equation to have a root in the region |x| < ε.

If θ̂n denotes this root, we have thus established that

θ̂n
P→ θ.

For details of this argument, see the very clear exposition in
the original proof on pp. 497 ff. of

H. Cramér (1946). Mathematical Methods in Statistics.
Princeton University Press, NJ.

7



Digression on convexity

A real valued function g(x) is said to be convex if

g{(x1 + x2)/2} ≤ {g(x1) + g(x2)}/2for all x1, x2.

It is stricly convex if the inequality is strict unless x1 = x2.

A function g(x) is concave if −g(x) is convex. A function
which is both convex and concave is affine, i.e. has the
form g(x) = a + bx

If g is twice differentiable, g is convex if and only if
g′′(x) ≥ 0 for all x.

The function g(x) = x2 is strictly convex, whereas
g(x) =

√
x and g(x) = log x are strictly concave.

8



Jensen’s inequality

One of the most used inequalities in probability theory is
due to J.L.J Jensen, a Danish mathematician who worked
in the Copenhagen Telephone Company around 1900.

If g(x) convex it holds for any probability distribution that

E{g(X)} ≥ g{E(X)}.

If g is strictly convex, equality holds if and only if X is
constant.

The proof can be found in most probability books. For
g(x) = x2 we get the well-known

E(X2) ≥ {E(X)}2

with equality if and only if X is constant.
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Wald’s proof of consistency

Cramér’s argument yields a consistent root of the likelihood
equation, but there may be many roots, so is this root
related to the maximum?

Wald (1949) showed consistency of the MLE along the
following lines:

Let θ0 be the true value of θ and define

λ(θ) = Eθ0{log f(X; θ)} = Eθ0{l(θ)}.

The function λ(θ) is the expected value of the
log-likelihood function, and we first show that this function
has its unique maximum at θ = θ0.
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Since the function log x is concave, Jensen’s inequality
yields

λ(θ)− λ(θ0) = Eθ0

{
log

f(X; θ)
f(X; θ0)

}
≤ log

[
Eθ0

{
f(X; θ)
f(X; θ0)

}]
= log

{∫
f(x; θ)
f(x; θ0)

f(x; θ0) dx

}
= 0,

where equality holds if and only if everywhere
f(x; θ) = f(x; θ0).

So if f(x; θ) = f(x; θ0) =⇒ θ = θ0 we have

λ(θ0) ≥ λ(θ)
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with equality only when θ = θ0.

The law of large numbers now implies that,

l̄n(θ) =
1
n

∑
log f(Xi; θ)

P→ λ(θ).

So the issue is whether it holds that

gn(θ)→ g(θ) =⇒ arg max
θ

gn(θ)→ arg max
θ

g(θ)??

Unfortunately this is not true in general, but verifiable
conditions can be given for this to hold. Note that Wald’s
consistency proof has a very different flavour from Cramér’s,
as smoothness conditions do not play an essential role.
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Observed Fisher information

As argued, we may in wide generality assume that the MLE
satisfies

θ̂n
a∼ N{θ, in(θ)−1}

where in(θ) = ni(θ) is the information in the full sample.

But how can we use this to judge the uncertainty of θ̂ when
θ is unknown?

On possibility is to use in(θ̂) instead of in(θ) but an
alternative would be to go directly into the Taylor
approximation and use

j(θ̂) = −
∑

l′′(Xi; θ̂)

and it turns out that this in many ways is preferable.
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If a maximum of the likelihood function has been found, we
must have j(θ̂) is positive. The quantity j(θ̂) is known as
the observed Fisher information

In any case, it is an easy consequence of the consistency of
θ̂ and Slutsky’s theorem that, under Cramér’s conditions,
any of√

ni(θ)(θ̂ − θ),
√

ni(θ̂)(θ̂ − θ),
√

j(θ̂)(θn − θ)

converge in distribution to N (0, 1) (Problem sheet 4).

This fact holds also in the multivariate case with square
roots of matrices properly interpreted.
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Computation of the MLE

Generally the solution to the likelihood equation must be
calculated by iterative methods.

One of the most common methods is the Newton–Raphson
method and is based on successive approximations to the
solution, using Taylor’s theorem to approximate the
equation.

Thus, we take an initial value θ0 and write

0 = S(θ0)− j(θ0)(θ − θ0)

ignoring the remainder term. Solving this equation for θ
then yields a new value θ1

θ1 = θ0 + j(θ0)−1S(θ0)
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and we keep repeating this procedure as long as |S(θj)| > ε.

Clearly, θ̂ is a fixed point of this algorithm as S(θ̂) = 0.

Formally the iteration becomes

• Choose an initial value θ and calculate S(θ) and j(θ);

• While |S(θ)| > ε Repeat

1. θ ← θ + j(θ)−1S(θ)
2. Calculate S(θ) and j(θ) go to 1

• Return θ;

Other criteria for terminating the iteration can be used. To
get a criterion which is insensitive to scaling of the
variables, one can instead use the criterion j(θ)S(θ)2 > ε.
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Properties of the Newton–Raphson method

If θ0 is chosen sufficiently near θ̂ convergence is very fast.

It can be computationally expensive to evaluate j(θ) a large
number of times. This is sometimes remedied by only
changing j every 10 iterations or similar.

Another problem with the Newton–Raphson method is its
lack of stability. When the initial value θ0 is far from θ it
might wildly oscillate and not converge at all.

This is sometimes remedied by making smaller steps as

θ ← θ + γj(θ)−1S(θ)

where 0 < γ < 1 is a constant.
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