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Convergence in probability and in distribution

A sequence of random variables Y1, Y2, . . . is said to
converge in probability to a random variable Y if for all
ε > 0

lim
n→∞

P{|Yn − Y | > ε} = 0

and we then write plim Yn = Y or Yn
P→ Y . We mostly use

the special case where Y = c is constant.

Y1, Y2, . . . converges in distribution to Y if for all
continuity points y of the distribution function
F (y) = P (Y ≤ y) of Y it holds that

lim
n→∞

P (Yn ≤ y) = F (y).

We then write dlim Yn = Y or Yn
D→ Y .
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Slutsky’s theorems

Let Y1, Y2 . . . and Z1, Z2, . . . be sequences of random

variables so that Yn
D→ Y and Zn

P→ c where c is a
constant. It then holds that

• Yn + Zn
D→ Y + c;

• YnZn
D→ cY .

Indeed if g(y, z) is continuous at all points (y, c), it holds
that

g(Yn, Zn) D→ g(Y, c).

Note that the two first statements are special cases of the
latter. See Knight (1999) for proofs of these results.
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The delta method

Suppose we have established convergence in distribution for
a scaled and centered sequence of variables

Yn = (Xn − b)/an
D→ Y (1)

for a scaling sequence an > 0 which converges to 0 for
n →∞.

If g is continuously differentiable at b with derivative g′

{g(Xn)− g(b)}/an
D→ g′(b)Y. (2)

This result is mostly used when Y ∼ N (0, 1) where we also

write (1) as Xn
a∼ N (b, a2

n) with the consequence (2) then

as g(Xn) a∼ N{g(b), a2
ng′(b)2}.
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Proof of the delta method

This is an easy consequence of Taylor’s theorem and
Slutsky’s theorems.

First realise that the convergence in distribution of

Yn = (Xn − b)/an implies Xn
P→ b because

lim
n→∞

P (|Xn − b| > ε)

= lim
n→∞

P (|Xn − b|/an > ε/an)

= lim
n→∞

{1− P (Yn < ε/an) + P (Yn > −ε/an)}

= lim
n→∞

{1− F (ε/an) + F (−ε/an)} = 1− 1 + 0 = 0.

Taylor’s theorem yields

g(Xn)− g(b) = g′(b∗n)(Xn − b),
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where b∗n is between Xn and b. Now divide by an to get

{g(Xn)− g(b)}/an = g′(b∗n)(Xn − b)/an.

Since Xn
P→ b and b∗n is between Xn and b, b∗n

P→ b. As g is

continuously differentiable, we conclude that g′(b∗n) P→ g′(b)
and Slutsky’s theorem now yields the result.
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Multivariate delta method

The delta method can be generalised immediately to the
multivariate case. Suppose Y is multivariate in (1) so

Xn
a∼ NS(b, a2

nΣ),

and g = (g1, . . . , gR) are continuously differentiable at b
with matrix of partial derivatives g′(b) with

g′(b)rs =
∂

∂bs
gr(b).

Then it holds that

g(Xn) a∼ NR{g(b), a2
ng′(b)Σg′(b)>}.
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Asymptotics of MLE
in canonical exponential families

Consider a sample (X1, . . . , Xn) of size n from a
d-dimensional canonical exponential family with individual
densities

f(x; θ) = b(x)eθ>t(x)−c(θ), θ ∈ Θ ⊆ Rd.

We have seen that the MLE of θ is given as

θ̂ = θ̂n = τ−1(T̄n),

where τ is the mean value mapping and

T̄n =
t(X1) + · · ·+ t(Xn)

n
.
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We will now show that the MLE is asymptotically normally
distributed, and asymptotically unbiased and efficient, i.e.

θ̂n
a∼ Nd{θ, i(θ)−1/n}.

The central limit theorem yields for η = τ(θ) that

T̄n
a∼ Nd

{
η,

1
n

i(θ)
}

.

Using the inverse function theorem for g = τ−1 gives

g′(η) =
dθ

dη
=

{
dη

dθ

}−1

= {τ ′(θ)}−1 = i(θ)−1.

The delta method now yields

θ̂n
a∼ Nd{g(η),

1
n

i(θ)−1i(θ)i(θ)−1} = Nd{θ, i(θ)−1/n}.
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Asymptotics of MLE in general case

In the general case we give a heuristic argument for the fact
that — under suitable regularity conditions — it holds that

θ̂n
a∼ Nd{θ, i(θ)−1/n},

where i(θ) is the Fisher information for an individual
observation.

For simplicity we consider the one-dimensional case. As
usual we let l(θ) be the log-likelihood function and S(θ)
the score statistic. We also define

j(θ) = −l′′(θ) = −S′(θ)
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so we have that

S(θ) =
∑

i

S(Xi; θ), j(θ) =
∑

i

j(Xi; θ)

and
V{S(θ)} = E{j(θ)} = ni(θ).

Now use Taylor’s formula to write

0 = S(θ̂) = S(θ)− j(θ)(θ̂ − θ) + R(X, θ, θ̂)

and hope that the remainder term R is small and can be
ignored.

Solve this equation to yield (ignoring the remainder term)

√
n(θ̂ − θ) =

S(θ)/
√

n

j(θ)/n
.
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By the LLN the denominator converges in probability to
i(θ).

By the central limit theorem the numerator converges in
distribution to N (0, i(θ)).

Slutsky’s theorems now yields

θ̂n
a∼ N{θ, i(θ)−1i(θ)i(θ)−1/n} = N (θ, i(θ)−1/n).

The issue is to find conditions which ensures the remainder
term to be small.

Apart from the usual conditions which ensure interchange
of differentiation and integration, so the Fisher information
is well defined and equal to the variance of the score
statistic, this typically involves the assumptions that
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• the third derivative of l(θ) is uniformly bounded in a
neighbourhood of θ;

• the estimator is consistent so that θ̂n
P→ θ.

In general, the last of these conditions is more tricky to
establish than the first, but both are fulfilled in a large
number of cases.
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