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Maximum likelihood in canonical families

Recall that a canonical exponential family has the form

f(x; θ) = b(x)eθ>t(x)−c(θ), θ ∈ Θ ⊆ Rd,

where Θ is open and connected.

To find the MLE of θ based on observing X = x we write

lx(θ) = logLx(θ) = θ>t(x)− c(θ)

and equate partial derivatives w.r.t. θr to zero to get the
maximum likelihood equations

sr(θ) =
∂

∂θr
lx(θ) = 0 ⇐⇒ tr(x) = Eθ{tr(X)},
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where we have used that

∂

∂θr
c(θ) = Eθ{tr(X)}.

Taking second derivatives we further get

∂2

∂θrθs
lx(θ) = −irs(θ) = −Covθ{tr(X), ts(X)}.

Since the latter is negative definite, any stable point of the
log-likelihood is a maximum and there is therefore also at
most one of them.

Another way of expressing the latter is to say that the
log-likelihood function is strictly concave.
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Moment equations for the MLE

What we have just shown can be expressed as follows:

In canonical exponential families the log-likelihood function
has at most one local maximum within Θ. This is then
equal to the global maximum and determined by the unique
solution to the equation

Eθ{t(X)} = t(x).

In this sense the method of MLE for linear exponential
families is similar to the method of moments, just that
general functions t1(X), t2(X), . . . , td(X) are used rather
than the powers X,X2, . . . , Xd.

It is less trivial to identify when a solution to the likelihoood
equation exists, but the problem is well understood.
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Example

Consider again the linear and canonical exponential family
of Gamma distributions with

f(x;α, β) =
βαxα−1

Γ(α)
e−βx =

1
x
eα log x−βx+α log β−log Γ(α),

where α > 0 and β > 0 are unknown.

Assume we have a sample x = (x1, . . . , xn) from this
distribution.

The canonical sufficient statistics for the sample are then∑
t(xi) =

(∑
log xi,−

∑
xi

)
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and the corresponding likelihood equations become∑
log xi = nEα,β(logX) = n{ψ(α)− log β}

and
−

∑
xi = −nEα,β(X) = −nα/β.

Solving the second equation for β and inserting the result
into the first yields

log x− log x = ψ(α)− logα, β = α/x̄.

The first of these equations must be solved numerically.

This is in contrast to the simple moment estimators where
E(logX) is replaced with E(X2) to yield the explicit
solution α̃ = nx̄2/SSD.
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The mean value mapping

Define the mean value mapping τ as

τ(θ) = Eθ{t(X)}.

The likelihood equation can then be compactly written as

τ(θ) = t(x)

and since the likelihood equation always has at most one
solution, the mapping τ is one-to-one so we can write

θ̂ = τ−1{t(x)}

provided a solution exists, i.e. if t(x) is in the image of τ .
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The mean value parameter

This then leads to the idea of using η = τ(θ) as an
alternative parametrization of the exponential family.

The parameter η is known as the mean value parameter
whereas the parameter θ is known as the canonical
parameter.

The literature is a little confused concerning the
terminology. Many authors use the term natural parameter
for θ, but others use the same term for η, so beware when
you read about exponential families elsewhere.
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Example

Consider the normal distribution N (µ, σ2) with σ2 > 0 and
both µ and σ2 unknown. From the expression

f(x;µ, σ2) =
1√
2π
e−

x2

2σ2 +x µ

σ2−
µ2

2σ2− 1
2 log σ2

we identify the canonical parameters as

θ1 =
−1
2σ2

, θ2 =
µ

σ2

whereas the mean value parameters are

η1 = E(X2) = σ2 + µ2, η2 = E(X) = µ.

Note that both parametrizations are different from the
usual (µ, σ2).
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Estimation of the mean value parameter

It follows from the invariance of the MLE under
reparametrizations that we simply have

η̂ = t(X)

and therefore that the MLE for the mean value parameter
is unbiased . Since t(X) is also complete and sufficient, the
MLE for is MVUE for the mean value parameter .

But in addition it holds that the MLE of the mean value
parameter is efficient in the sense that it attains the
Cramér–Rao bound.

To see the latter in the one-dimensional case, we just use
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that for η = τ(θ) we have

τ(θ) = c′(θ), i(θ) = c′′(θ) = τ ′(θ)

so the score statistic has the form

s(x; θ) = t(x)− c′(θ) =
i(θ){t(x)− τ(θ)}

τ ′(θ)
,

which was the condition derived in Lecture 2.

The converse also holds: the Cramér–Rao bound is only
attained for affine transformations of the mean value
parameter.

Note also that the mean value mapping τ is continuously
differentiable (in fact it is analytic) with derivatives

∂

∂θs
τr(θ) =

∂2

∂θrθs
c(θ) = irs(θ).
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