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Method of Least Squares

Oldest general method of estimation, due to Legendre and
Gauss, about 1810. Model determined as

Y = Xβ + ε,

where X is an n× p matrix (of rank p), β is an unknown
p× 1 vector and ε an n× 1 random vector with covariance
matrix σ2W−1, where W is an n× n known positive
definite weight matrix. σ2 might be known or unknown.

Simple special case occurs when W is the identity matrix,
sometimes referred to as unweighted least squares or just
least squares.

Variants relax assumption of regularity and rank condition.
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Normal equations

The (weighted) least squares estimator β̂ is

β̂ = arg min
β
||Y −Xβ||2W = arg min

β
(Y −Xβ)>W (Y −Xβ).

The estimate β̂ is unique solution to the normal equations

X>WXβ = X>WY

so that
β̂ = (X>WX)−1X>WY.

If σ2 is unknown, this is traditionally estimated as

σ̂2 = ||Y −Xβ̂||2W /(n− p) = SSD/(n− p),

where d = n− p are the degrees of freedom of the
equations.
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Properties of least squares

β̂ is unbiased.

In fact, β̂ is BLUE , the Best Linear Unbiased E stimator of
β in the sense that it has minimum variance among all
unbiased estimators which are linear in Y .

Also, σ̂2 = SSD/d is unbiased for σ2.

These facts were established by Gauss about 1815.

If errors are multivariate Gaussian, β̂ and σ̂2 are also
MVUE , because then (β̂, σ̂2) are sufficient and complete.
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Method of moments

Not a method with same generality as LS, but was used
e.g. by Thiele (1889) to deal with skew distributions.

Consider X = (X1, . . . , Xn) independent and identically
distributed with individual densities f(xi; θ) where θ ∈ Θ is
unknown.

Then estimate the first p moments of the distribution with
corresponding empirical moments:

µk(θ) =
∫

xkf(x; θ) dx, mk =
1
n

∑
xk

i , quadk = 1, . . . , p.

5



Using central moments

Equivalently, use central moments for k ≥ 2 where
µ = µ1(θ) = µ̄1(θ):

µ̄k(θ) =
∫

(x− µ)kf(x; θ) dx, m̄k =
1
n

∑
(xi − x̄)k

for k = 1, . . . , p. Use as many moments as necessary to
ensure the equations

µ̄k(θ) = m̄k, k = 1, 2, . . . , p

have a unique solution for θ. Moment estimators are
unbiased for moments (but not for central moments).

The method of moments can sometimes give ”quick and
dirty” estimates but is generally not very good.
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Example

Consider a sample X = (X1, . . . , Xn) from a Gamma
distribution with individual densities

f(x;α, β) =
βαxα−1

Γ(α)βα
e−x/β , α > 0, β > 0.

For θ = (α, β) we have

µ1(θ) = E(X) = αβ, µ̄2(θ) = V(X) = αβ2

so the moment estimators become

α̃ =
(
∑

Xi)2

n
∑

(Xi − X̄)2
, β̃ =

∑
(Xi − X̄)2∑

xi
.
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Method of maximum likelihood

The method of maximum likelihood chooses the estimate of
θ which make the observations most probable

θ̂ = θ̂(x) = arg max
θ

Lx(θ) = arg max
θ

f(x; θ)

provided a unique maximum exists.

As a general method, this is due to R. A. Fisher about
1920. When errors are Gaussian in the general linear model,
the maximum likelihood estimator (MLE) is equal to the
least squares estimator.

Strictly speaking this is not true for σ2, where the MLE is
SSD/n rather than SSD/d. The latter is then an example
of a bias-corrected MLE.
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Invariance of the MLE

The method of maximum likelihood generally leads to
estimators with very good properties, although there are
exceptions. For example, the MLE behaves well under
reparametrizations:

If g is a one-to-one function, and θ̂ is the MLE of θ then
g(θ̂) is the MLE of g(θ).

This is trivially true as if we let θ = g−1(µ) then

f{x; g−1(µ)} is maximized in µ exactly when µ = g(θ̂).

When g is not one-to-one the discussion becomes more
subtle, but we simply choose to define

ĝMLE(θ) = g(θ̂.)
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Sufficiency and MLE

If θ̂ is the unique MLE and T = t(X) is sufficient, then θ̂ is
a function of t.

This follows from the factorization theorem as

arg max
θ

h(x)k{t(x); θ} = h(x) arg max
θ

k{t(x); θ}

and the latter clearly is a function of t(x).

In particular this implies

If the MLE is itself sufficient, it is minimal sufficient.

Note also that Rao–Blackwellization is never needed for the
MLE, since it already is a function of any sufficient statistic.
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Ancillarity

A statistic A = a(X) is ancillary if the distribution of A
does not depend on θ. Intuitively A is then uninformative
about the unknown parameter.

Notion of ancillarity is also due to Fisher, but its role is less
clear than that of sufficiency.

If θ̂ is not itself sufficient, it is often possible to find an
ancillary statistic so that (θ̂, A) is jointly sufficient. Then

f(x |A = a; θ) ∝ h(x)k{θ̂(x), a; θ}

so θ̂ is sufficient when considering the conditional
distribution given the ancillary A. Since the distribution of
A carries no information about θ, it is tempting to insist on
conditioning in this way.
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Example

Consider an experiment with two instruments available.
One produces measurements N (θ, 1) whereas the other
produces measurements which are N (θ, 100).

Toss a fair coin and let A = i, i = 1, 2 denote that the
instrument i is chosen. Perform then the measurement to
obtain X. The joint distribution of (X, A) is determined as

f(x, a; θ) = φ(x− θ)1{1}(a)/2 + φ{(x− θ)/10}1{2}(a)/2

so θ̂ = x is not sufficient. But why should we not consider
A = a fixed and condition on the actual instrument used?

This example in convincing, but in general there is no
unique ancillary statistic to choose from, so then it is not
all that clear.
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Basu’s Theorem

Sometimes it does not matter, whether we condition on A
or not: If T = t(X) is complete and sufficient and A is
ancillary, then T and A are independent.

The proof is surprisingly simple:

Let g be an arbitrary bounded function of a and let
m = Eθ{g(A)}. Note m does not depend on θ as A was
ancillary. Now let

h(t(x)) = Eθ[{g(A)−m} |T = t(x)]

which also does not depend on θ because T was sufficient.
Iterating expectations and using the definition of m yields

0 = Eθ{h(T )} = EθEθ[g{a(X)} −m |T ] for all θ
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and completeness therefore yields

Eθ{g(A) |T = t(x)} = E{g(A)},

thus that A and T are independent.
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