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Notation and setup

X denotes sample space, typically either finite or countable,
or an open subset of Rk.

We have observed data x ∈ X which are assumed to be a
realisation X = x of a random variable X.

The probability mass function (or density) of X is partially
unknown, i.e. of the form f(x; θ) where θ is a parameter ,
varying in the parameter space Θ.

This lecture is concerned with principles and methods for
estimating (guessing) θ on the basis of having observed
X = x.
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Unbiased estimators

An estimator θ̂ = t(x) is said to be unbiased for a function
θ if it equals θ in expectation:

Eθ{t(X)} = E{θ̂} = θ.

Intuitively, an unbiased estimator is ‘right on target’.

The bias of an estimator θ̂ = t(X) of θ is

bias(θ̂) = E{t(X)− θ}.

If bias(θ̂) is of the form cθ, θ̃ = θ̂/(1 + c) is unbiased for θ.

We then say that θ̃ is a bias-corrected version of θ̂.
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Unbiased functions

More generally t(X) is unbiased for a function g(θ) if

Eθ{t(X)} = g(θ).

Note that even if θ̂ is an unbiased estimator of θ, g(θ̂) will
generally not be an unbiased estimator of g(θ) unless g is
linear or affine.

This limits the importance of the notion of unbiasedness. It
might be at least as important that an estimator is
accurate so its distribution is highly concentrated around θ.

If an unbiased estimator of g(θ) has mimimum variance
among all unbiased estimators of g(θ) it is called a
minimum variance unbiased estimator (MVUE).
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Is unbiasedness a good thing?

Unbiasedness is important when combining estimates, as
averages of unbiased estimators are unbiased (sheet 1).

When combining standard deviations s1, . . . , sk with d..o.f.
d1, . . . , dk we always average their squares

s̄ =

√
d1s2

1 + · · ·+ dks2
k

d1 + · · ·+ dk

as each of these are unbiased estimators of the variance σ2,
whereas si are not unbiased estimates of σ.

Be careful when averaging biased estimators! It may well
be appropriate to make a bias-correction before averaging.
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Mean Square Error

One way of measuring the accuracy of an estimator is via
its mean square error (MSE):

mse(θ̂) = E(θ̂ − θ)2.

Since it holds for any Y that E(Y 2) = V(Y ) + {E(Y )}2,
the MSE can be decomposed as

mse(θ̂) = V(θ̂ − θ) + {E(θ̂ − θ)}2 = V(θ̂) + {bias(θ)}2,

so getting a small MSE often involves a trade-off between
variance and bias. By not insisting on θ̂ being unbiased, the
variance can sometimes be drastically reduced.

For unbiased estimators, the MSE is obviously equal to the
variance, mse(θ̂) = V(θ̂), so no trade-off can be made.
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Asymptotic consistency

An estimator θ̂ (more precisely a sequence of estimators θ̂n)
is said to be (weakly) consistent if it converges to θ in
probability, i.e. if for all ε > 0,

lim
n→∞

P{|θ̂ − θ| > ε} = 0.

It is consistent in mean square error if limn→∞mse(θ̂) = 0.

Both of these notions refer to the asymptotic behaviour of
θ̂ and expresses that, as data accumulates, θ̂ gets closer
and closer to the true value of θ.

Asymptotic consistency is a good thing. However, in a
given case, for fixed n it may only be modestly relevant.
Asymptotic inconsistency is generally worrying.
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Fisher consistency

An estimator is Fisher consistent if the estimator is the
same functional of the empirical distribution function as the
parameter of the true distribution function:

θ̂ = h(Fn), θ = h(Fθ)

where Fn and Fθ are the empirical and theoretical
distribution functions:

Fn(t) =
1
n

n∑
1

1{Xi ≤ t), Fθ(t) = Pθ{X ≤ t}.

Examples are µ̂ = X̄ which is Fisher consistent for the
mean µ and σ̂2 = SSD/n which is Fisher consistent for σ2.
Note s2 = SSD/(n− 1) is not Fisher consistent.
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Consistency relations

If an estimator is mean square consistent, it is weakly
consistent.

This follows from Chebyshov’s inequality:

P{|θ̂ − θ| > ε} ≤ E(θ̂ − θ)2

ε2
=

mse(θ̂)
ε2

,

so if mse(θ̂) → 0 for n →∞, so does P{|θ̂ − θ| > ε}.

The relationship between Fisher consistency and asymptotic
consistency is less clear. It is generally true that

lim
n→∞

Fn(t) = Fθ(t) for continuity points t of Fθ,

so θ̂ = h(Fn) → Fθ if h is a suitably continuous functional .
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Score statistic

For X = x to be informative about θ, the density (and
therefore the likelihood function) must vary with θ.

If f(x; θ) is smooth and differentiable, this change is
quantified to first order by the score function:

s(x; θ) =
∂

∂θ
log f(x; θ) =

f ′(x; θ)
f(x; θ)

.

If differentiation w.r.t. θ and integration w.r.t. x can be
interchanged, the score statistic has expectation zero

E{S(θ)} =
∫

f ′(x; θ)
f(x; θ)

f(x; θ) dx =
∫

f ′(x; θ) dx

=
∂

∂θ

{∫
f(x; θ) dx

}
=

∂

∂θ
1 = 0.
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Fisher information

The variance of S(θ) is the Fisher information about θ:

i(θ) = E{S(θ)2}.
If integration and differentiation can be interchanged

i(θ) = V{S(θ)} = −E
{

∂

∂θ
S(θ)

}
= −E

{
∂2

∂θ2
log f(X; θ)

}
,

since then

E
∂2

∂θ2
log f(X; θ) =∫

f ′′(x; θ)
f(x; θ)

f(x; θ) dx−
∫ {

f ′(x; θ)
f(x; θ)

}2

f(x; θ) dx

= 0−E{S(θ)}2 = −i(θ).
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The normal case

It may be illuminating to consider the special case when
X ∼ N (θ, σ2) with σ2 known and θ unknown. Then

log f(x; θ) = −1
2

log(2πσ2)− (x− θ)2/(2σ2)

so the score statistic and information are

s(x; θ) = (x− θ)/σ2, i(θ) = E(1/σ2) = 1/σ2.

So the score statistic can be seen as a linear approximation
to the normal case, with the information determining the
scale, here equal to the inverse of the variance.
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Cramér–Rao’s inequality

The Fisher information yields a lower bound on the variance
of an unbiased estimator:

We assume suitable smoothness conditions, including that

• The region of positivity of f(x; θ) is constant in θ;

• Integration and differentiation can be interchanged.

Then for any unbiased estimator T = t(X) of g(θ) it holds

V(T ) = V(ĝ(θ)) ≥ {g′(θ)}2/i(θ).

Note that for g(θ) = θ the lower bound is simply the
inverse Fisher information i−1(θ).
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Proof of Cramér–Rao’s inequality

Since E{S(θ)} = 0, the Cauchy–Schwarz inequality yields

|Cov{T, S(θ)}|2 ≤ V(T )V{S(θ)} = V(T )i(θ). (1)

Now, since E{S(θ)} = 0,

Cov{T, S(θ)} = E{T S(θ)} =
∫

t(x)
f ′(x; θ)
f(x; θ)

f(x; θ) dx

=
∫

t(x)f ′(x; θ) dx =
∂

∂θ
E{T} = g′(θ),

inserting this into the inequality (1) and dividing both sides
with i(θ) yields the result.
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Attaining the lower bound

It is rarely possible to find an estimator which attains the
bound. In fact (under the usual conditions)

An unbiased estimator of g(θ) with variance {g′(θ)}2/i(θ)
exists if and only if the score statistic has the form

s(x; θ) =
i(θ){t(x)− g(θ)}

g′(θ)
.

In the special case where g(θ) = θ we have

s(x; θ) = i(θ){t(x)− g(θ)}.
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Proof of the expression for the score statistic

Cauchy–Schwarz inequality is sharp unless T is an affine
function of S(θ) so

t(x) = ĝ(θ) = a(θ)s(x; θ) + b(θ) (2)

for some a(θ), b(θ).

Since t(X) is unbiased for θ and E{S(θ)} = 0, we have
b(θ) = g(θ). From the proof of the inequality we have

Cov{T, S(θ)} = g′(θ).

Combining with the linear expression in (2) gives

g′(θ) = Cov{T, S(θ)} = a(θ)V{S(θ)} = a(θ)i(θ)

and the result follows.
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Efficiency

If an unbiased estimator attains the Cramér–Rao bound, it
it said to be efficient.

An efficient unbiased estimator is clearly also MVUE.

The Bahadur efficiency of an unbiased estimator is the
inverse of the ratio between its variance and the bound:

0 ≤ beff ĝ(θ) =
{g′(θ)}2

i(θ)V{ĝ(θ)}
≤ 1.

Since the bound is rarely attained, it is sometimes more
reasonable to compare with the smallest obtainable

0 ≤ eff ĝ(θ) =
inf{T :E(T )=g(θ)}V(T )

V{ĝ(θ)}
≤ 1.
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