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Notation and setup

X denotes sample space, typically either finite or countable,
or an open subset of Rk.

We have observed data x ∈ X which are assumed to be a
realisation X = x of a random variable X.

The probability mass function (or density) of X is partially
unknown, i.e. of the form f(x; θ) where θ is a parameter ,
varying in the parameter space Θ.

Statistical inference is concerned with saying something
sensible about θ on the basis of having observed X = x.
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Variations

The observation X = x is usually more composite than just
a real number.

Situations mostly considered here is when
X = (X1, . . . , Xn), corresponding to n independent
repetitions under identical conditions. We then refer to x
as a sample of size n and have

f(x; θ) = f(x1; θ) · · · f(xn; θ)

corresponding to X1, . . . , Xn being independent and
identically distributed.

But X can be more complex, as e.g. in regression.

Other common notations are fθ(x), f(x | θ) and f(x, θ).
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A simple example

Data may consist of 3 measurements of a height difference,
in millimeters:

x = (119, 112, 114) = (x1, x2, x3).

We may consider these to originate from a normal
distribution, N (µ, σ2), so that θ = (µ, σ2) and

f(x; θ) =
3∏

i=1

1√
2πσ2

e−
(xi−µ)2

2σ2 .

The parameter space Θ would typically be R×R+

corresponding to µ and σ2 being completely unknown and
σ2 > 0.
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Parameters and parameter spaces

Mostly Θ is an open subset of Rd. Θ is sometimes
implicitly specified, by default consisting of all values of θ
where the expression f(x; θ) makes sense.

θ can be extrinsic , i.e. defined externally from substance
matter considerations, or it can be intrinsic , simply
labelling the family F of distributions.

F = {f(·; θ) | θ ∈ Θ}.

The distinction between extrinsic and intrinsic is not always
clear and often the true picture is mixed.

The triple (X ,F ,Θ) is referred to as the statistical model
but the latter expression is also used in an informal sense.
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Estimation

Estimation is ‘guessing’ the value of θ based on X = x. We
speak about a point estimate if the value of the estimator
is a single point:

θ̂ = θ̂(x) = t(x) = t(x1, . . . , xn),

whereas we speak about an interval estimate or set
estimate if we just state that, based on having seen x, we
conclude

θ ∈ C = C(x) = C(x1, . . . , xn)

with some certainty.

Estimation theory is concerned with principles and methods
for finding estimates and assessing their uncertainty.
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Example revisited

The parameter µ may be extrinsically defined as the true
height difference, whereas σ2 is just labelling the
distributions, thus intrinsic.

On the other hand, σ2 is also the inaccuracy of the
measuring instrument, thus extrinsic.

Potential point estimates for µ and σ are

µ̂ = x̄ =
x1 + x2 + x3

3
= 115, µ̃ = median(x) = x(2) = 114.

σ̂ = s = 3.61, σ̃ = range(x)/2 = (x(3) − x(1))/2 = 3.5.

A potential set estimate for µ is [x(1), x(3)] = [112, 119].
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Unbiased estimators

An estimator θ̂ = t(X) is said to be unbiased for a function
θ if it equals θ in expectation:

Eθ{t(X)} = E{θ̂} = θ.

More generally ĝ(θ) = t(x) is unbiased for a function g(θ) if

Eθ{t(X)} = g(θ).

In the example, µ̂ and µ̃ are unbiased for µ whereas neither
of σ̂ and σ̃ are unbiased for σ.

Show this as an exercise (problem sheet 1).
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Frequentist and Bayesian probability

Frequency interpretation of probability identifies P (A)
with the long-run relative frequency of an event A in
repeated trials:

P (A) = lim
n→∞

# of occurrences of A in n trials

n
.

Bayesian probability is subjective and P (A) is Your
personal belief that A will occur or has occurred, so
that P (A)/{1− P (A)} are fair odds to You for a bet
on the event A.

Probability seems most meaningful when aspects of both
interpretations pertain to the problem in question.
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Frequentist paradigm for inference

Uses frequency interpretation of probability.

Reports uncertainty of an estimator in terms of the
sampling distribution of a point estimator θ̂ = t(x) or set
estimator C(x).

For example the uncertainty of µ̂ = x̄ when Xi ∼ N (µ, σ2)
can be reported as

µ̂ ∼ N (µ, σ2/n)

which makes fully sense when σ2 is known. Otherwise the
reporting is more complex and uses the t-distribution.

Note that unbiasedness is a frequentist concept.
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Bayesian inference

1. Express Your belief about θ in terms of a prior
distribution π, based on knowledge you have before
observing x.

2. Form the joint distribution of data and parameter by
interpreting f(x; θ) as the conditional distribution of
data given θ, therefore often written f(x | θ):

f(x, θ) = f(x | θ)π(θ).

3. For inference, calculate the posterior distribution π∗

of θ by Bayes’ formula (conditional probability)

π∗(θ) = f(θ |x) =
f(x | θ)π(θ)∫
f(x | η)π(η) dη

∝ Lx(θ)π(θ).
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Likelihood

The function Lx(θ) = f(x | θ) = f(x; θ) is known as the
likelihood function, obtained from f(x; θ) by considering x
fixed and θ varying.

Its logarithm is traditionally denoted lx(θ) = log Lx(θ).

The likelihood function is equally important for frequentist
and Bayesian inference and likelihood may well be the most
fundamental concept within the entire subject of statistics.

The likelihood function ranges the parameter values
according to how much probability they give to the data.

It is only well-defined up to a multiplicative constant:
Proportional likelihood functions are equivalent.
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