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Unbiased estimators

An estimator ĝ(θ) = t(x) is unbiased for a function g(θ) if

Eθ{t(X)} = g(θ).

The bias of an estimator of g(θ) is

bias{ĝ(θ)} = E{t(X)− g(θ)}.

Even if θ̂ is an unbiased estimator of θ, g(θ̂) will generally
not be an unbiased estimator of g(θ).

If ĝ(θ) has mimimum variance among all unbiased
estimators of g(θ) it is a minimum variance unbiased
estimator (MVUE). An MVUE is unique.
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Mean Square Error

The mean square error (MSE) of an estimator of θ is:

mse(θ̂) = E(θ̂ − θ)2.

The MSE can be decomposed as

mse(θ̂) = V(θ̂ − θ) + {E(θ̂ − θ)}2 = V(θ̂) + {bias(θ)}2.

For unbiased estimators, the MSE is equal to the variance,
mse(θ̂) = V(θ̂).
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Score and Fisher information

The score statistic is define as

s(X; θ) =
∂

∂θ
log f(X; θ) =

f ′(X; θ)
f(X; θ)

.

Under regularity conditions we have

E{S(θ)} = 0

and the variance of S(θ) is the Fisher information:

i(θ) = V{S(θ)} = E{S(θ)2},

and further that

i(θ) = −E
{

∂

∂θ
S(θ)

}
= −E

{
∂2

∂θ2
log f(X; θ)

}
,
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Cramér–Rao’s inequality

Under the usual regularity conditions it holds for any
unbiased estimator T = t(X) of g(θ) that

V(T ) = V(ĝ(θ)) ≥ {g′(θ)}2/i(θ).

An unbiased estimator is said to be efficient if it attains the
lower bound.

this happens only if the score statistic has the form

s(x; θ) =
i(θ){t(x)− g(θ)}

g′(θ)
,

essentially implying that g(θ) is the mean value parameter
in a linear exponential family.
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Sufficiency

A statistic T = t(X) is sufficient for θ if
Pθ{X = x |T = t} does not depend on θ.

A statistic is minimal sufficient if it is sufficient and it can
be calculated from any other sufficient statistic.

A statistic T = t(X) is sufficient for θ if and only if the
family of densities can be factorized as

f(x; θ) = h(x)k{t(x); θ}, x ∈ X , θ ∈ Θ, (1)

i.e. into a function which does not depend on θ and one
which only depends on x through t(x).
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The Rao–Blackwell theorem

If U = u(X) is an unbiased estimator of a function g(θ)
and T = t(X) is sufficient for θ then U∗ = u∗(X) where
u∗(x) = Eθ{U |T = t(x)} is also unbiased for g(θ) and

V(U∗) ≤ V(U),

The process of modifying U to the improved estimator U∗

by taking conditional expectation w.r.t. a sufficient statistic
T , is known as Rao–Blackwellization.

It follows that an MVUE must be a function of any minimal
sufficient statistic .
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Likelihood

The function Lx(θ) = f(x | θ) = f(x; θ) is known as the
likelihood function, obtained from f(x; θ) by considering x
fixed and θ varying.

Its logarithm is traditionally denoted lx(θ) = log Lx(θ).

The likelihood function is only well-defined up to a
multiplicative constant so proportional likelihood functions
are equivalent.

The likelihood function is always minimal sufficient.
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Completeness and sufficiency

A statistic T is complete w.r.t. θ if for all functions h

Eθ{h(T )} = 0 for all θ =⇒ h(t) = 0 a.s.

Any estimator of the form U = h(T ) of a complete and
sufficient statistic T is the unique unbiased estimator based
on T of its expectation.

In fact, if T is complete and sufficient, it is also minimal
sufficient.

Hence, if T is complete and sufficient, U = h(T ) is the
MVUE of its expectation.
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Method of moments

Consider a sample X = (X1, . . . , Xn) from f(x; θ) where
θ ∈ Θ is unknown.

Estimate the first p moments of the f with corresponding
empirical moments:

µk(θ) =
∫

xkf(x; θ) dx, mk =
1
n

∑
xk

i , k = 1, . . . , p.

Equivalently, use central moments where µ = µ1(θ):

µ̄k(θ) =
∫

(x− µ)kf(x; θ) dx, m̄k =
1
n

∑
(xi − x̄)k

for k = 1, . . . , p.
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Use as many as necessary to ensure unique solution in θ of
the equations

µ̄k(θ) = m̄k, k = 1, 2, . . . , p

Moment estimators are unbiased for moments (but not for
central moments).

The method of moments is generally not very good.
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Method of maximum likelihood

The MLE θ̂ is given by

θ̂ = θ̂(x) = arg max
θ

Lx(θ) = arg max
θ

f(x; θ).

If g is a one-to-one function, and θ̂ is the MLE of θ then
g(θ̂) is the MLE of g(θ).

If θ̂ is the unique MLE and T = t(X) is sufficient, then θ̂ is
a function of t.

If the MLE is itself sufficient, it is minimal sufficient.

Rao–Blackwellization is never needed for the MLE.
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Ancillarity and Basu’s Theorem

A statistic A = a(X) is ancillary if the distribution of A
does not depend on θ.

Intuitively, A then carries no information about θ.

Basu’s Theorem says:

If T = t(X) is complete and sufficient and A is ancillary,
then T and A are independent.
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Exponential Families

A family F = {f(·; θ), θ ∈ Θ} is said to be (curved)
exponential if the densities have the form

f(x; θ) = b(x)ea(θ)>t(x)−c(θ),

where b(x) is known, t(x)> = (t1(x), . . . , tk(x)) is a vector
of known real-valued functions, a(θ) = (a1(θ), . . . , ak(θ))
are twice continuously differentiable functions of θ ∈ Θ, and
Θ is an open and connected subset of Rd with d ≤ k. Also,
the Jacobian J(θ) of a(θ) is assumed to have full rank d.

The representation is minimal if (1, t1, . . . , tk) are linearly
independent. Then the dimension of the family is equal to
d. The family is called linear if d = k and canonical if
a(θ) = θ.
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Linear and canonical exponential families

If the family is linear, T = t(X) is complete and sufficient.

For a canonical family it holds that

Eθ{tr(X)} =
∂

∂θr
c(θ), Covθ{tr(X), ts(X)} =

∂2

∂θrθs
c(θ),

so the score and Fisher information is

Sr(θ) = tr(X)−Eθ{tr(X)} ∂

∂θr
c(θ)

and

irs(θ) = Cov{tr(X), ts(X)} =
∂2

∂θrθs
c(θ).
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Maximum likelihood in linear exponential
families

In a linear exponential families the log-likelihood function
has at most one local maximum within Θ. This is then
equal to the global maximum and determined by the unique
solution to the equation

Eθ{t(X)} = t(x).

In this sense the method of MLE for linear exponential
families is similar to the method of moments, just that
general functions t1(X), t2(X), . . . , td(X) are used rather
than the powers X, X2, . . . , Xd.

It is less trivial to identify when a solution to the
likelihoood equation exists.
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The mean value parameter

The mean value mapping τ is defined as

τ(θ) = Eθ{t(X)}.

The likelihood equation can then be compactly written as

τ(θ) = t(x).

The parameter η = τ(θ) is the mean value parameter
whereas the parameter θ in a canonical exponential family
the canonical parameter.

the MLE of the mean value parameter is unbiased and
efficient in the sense that it attains the Cramér–Rao bound.
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Slutsky’s theorem and the delta method

Let Y1, Y2 . . . and Z1, Z2, . . . be sequences of random

variables so that Yn
D→ Y and Zn

P→ c.

If g(y, z) is continuous at all points (y, c), it holds that

g(Yn, Zn) D→ g(Y, c).

If Yn = (Xn − b)/an
D→ Y for a scaling sequence an > 0

with an → 0 and g is continuously differentiable at b

{g(Xn)− g(b)}/an
D→ g′(b)Y.

In particular if Xn
a∼ N (b, a2

n) for an → 0 then

g(Xn) a∼ N{g(b), a2
ng′(b)2}.
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Cramér’s conditions

The conditions below imply everything with score and
Fisher information to be well defined, and are also the
conditions needed fot the MLE to have good and simple
asymptotic properties:

1. Θ is an open subset of the real line;

2. A = {x | f(x; θ) > 0} does not depend on θ:

3. The log-likelihood function is three times
continuously differentiable so that for some δ > 0 and
all t with |θ − t| < δ, we have l(i)(x; t) < Mi(x),
where Eθ{Mi(X)} <∞;

4. i(θ) = −E{l′′(θ)} is positive.
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Asymptotic properties of the MLE

Cramér’s conditions imply that the MLE is consistent, more
precisely that there is at least one consistent root θ̂ to the
likelihood equation.

Additional conditions ensure that the root is indeed the
MLE so that MLE itself is consistent.

Under Cramér’s conditions, the consistent root is also
asymptotically normal and efficient in the sense that

θ̂n
a∼ N{θ, in(θ)−1}

where in(θ) = ni(θ) is the information in the full sample.
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Variants of the asymptotics

The quantity

jn(θ̂) = −
∑

l′′(Xi; θ̂)

is the observed Fisher information.

It holds that any of√
ni(θ)(θ̂ − θ),

√
ni(θ̂)(θ̂ − θ),

√
jn(θ̂)(θn − θ)

converge in distribution to N (0, 1)
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Newton–Raphson and the method of scoring

The Newton–Raphson iteration calculates the MLE by
repeating

θ ← θ + jn(θ)−1S(θ).

R. A. Fisher introduced the method of scoring which
replaces the observed second derivative with its expectation
to yield the iteration

θ ← θ + in(θ)−1S(θ)

In many cases, i(θ) is easier to calculate.

In canonical exponential families we get

j(θ) =
∂2

∂θ2
{c(θ)− θt(X)} = c′′(θ) = i(θ)

22



so for canonical exponential families the method of scoring
and the method of Newton–Raphson coincide.

The identity of Newton–Raphson and the method of
scoring only holds for the canonical parameter.
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The score test

The locally most powerful test (LMP) for a simple
hypothesis H0 : θ = θ0 has critical region

S(x; θ0) > K.

The constant K can be determined by Monte–Carlo
methods, or by large sample theory.

The score test for the hypothesis has critical region

S(x; θ0) >
√

ni(θ0)z1−α.

The two-sided score test has critical region

{S(x; θ0)}2 > ni(θ0)χ2(1)1−α.
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χ2 and Wald’s test

The test with critical region

X2 = ni(θ0)(θ̂ − θ0)2 > χ2(1)1−α

is the χ2-test.

The test with critical region

W = ni(θ̂)(θ̂ − θ0)2 > χ2(1)1−α,

is the Wald test.
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The maximized likelihood ratio test

The MLRT (or LRT for short), has critical region of the
form

Λ = λ(X) = −2 log
L(θ0;X)

L(θ̂;X)
> K.

It immediately extends to the multiparameter caseand to
the case where the null hypothesis H0 : θ ∈ Θ0 is
composite, i.e. where Θ0 has more than one value. Then

λ(x) = −2 log
supθ∈Θ0

L(θ;x)
supθ∈Θ L(θ;x)

= −2 log
L(ˆ̂θ;x)

L(θ̂;x)
,

where θ̂ = arg maxθ∈Θ and
ˆ̂
θ = arg maxθ∈Θ0 .
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Asymptotic properties

Suppose Θ is an open and connected subset of Rd and Θ0,
specified as

θ ∈ Θ0 ⇐⇒ h(θ) = 0

where h(θ) = (h1(θ), . . . , hk(θ)) is twice continuously
differentiable with Jacobian having constant and full rank k
for θ ∈ Θ0.

If further Cramér’s conditions are fulfilled, it holds that

Λ D→ Y

where Y follows a χ2-distribution with k degrees of
freedom.
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Approximate likelihood ratio tests

The proof of the asymptotic result for the LRT relies on the
approximation

Λ ≈ n(θ̂ − ˆ̂
θ)>C(θ̂ − ˆ̂

θ)

where C is a consistent estimate of i(θ0). There are
essentially four possibilities for the choice of C:

C1 = i(θ̂), C2 = i(ˆ̂θ), C3 = jn(θ̂)/n, C4 = jn(ˆ̂θ)/n,

all leading to test statistics which are asymptotically χ2(k).

This leads to the Wald statistics

W = n(θ̂ − ˆ̂
θ)>i(θ̂)(θ̂ − ˆ̂

θ), W̃ = (θ̂ − ˆ̂
θ)>jn(θ̂)(θ̂ − ˆ̂

θ)
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or the χ2 statistics

X2 = n(θ̂ − ˆ̂
θ)>i(ˆ̂θ)(θ̂ − ˆ̂

θ), X̃2 = (θ̂ − ˆ̂
θ)>jn(ˆ̂θ)(θ̂ − ˆ̂

θ).
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The sequential probability ratio test

The SPRT for a simple hypothesis H0 : θ = θ0 against a
simple alternative H1 : θ = θ1 has the following form:

• If Λn ≥ B, decide that H1 is true and stop;

• If Λn ≤ A, decide that H0 is true and stop;

• If A < Λn < B, collect another observation to obtain
Λn+1,

where Λn is the log-likelihood ratio

Λn = λ(X1, . . . , Xn) = log
L(θ1;X1, . . . , Xn)
L(θ0;X1, . . . , Xn)

.
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Limits and error probabilities

The approximate relation between the decision limits A and
B and the error probabilities

α = P (D1 |H0), β = P (D0 |H1),

where P (Di |Hj) denotes the probability of deciding that
Hi is true when in fact Hj is, is given as

B ≈ log
1− β

α
, A ≈ log

β

1− α
.

The only error in this approximation is that we have ignored
the ‘overshoot.
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