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The SPRT for a simple hypothesis Hy : 8 = 6, against a
simple alternative H;y : 6 = 61 has the following form:

e If A, > B, decide that H; is true and stop;
o If A, < A, decide that Hj is true and stop;
e If A< A, < B, collect another observation to obtain

An+1v

where A,, is the log-likelihood ratio

L(01;X1,. .. 7Xn)
L(eo;Xh...,Xn).

An = A(Xl,,Xn) :log



Consider X; independent Bernouilli variables with
P(X;=1;0)=1—-P(X; =0;0) =0.
In this case we get
01(1 — 6o) 1-06;

i) log ———~ 1 .
(Zx) %8 gy —y) T8 T g,
If we assume 0, > 6y the SPRT thus takes the form that
we defer decision if

)‘(xla cee axn)

pA+npn<ZXi < pB 4+ npn,




where

_ 01(1 — 6p) 1-6
1 1 0 0
= log - 70/ =]og — 2

P 0g90(1_01)7 Ui °g1—91’
which has a simple graphical representation, as the
boundaries depend on n as parallel straight lines with slope
pn and intercepts (pA, pB)



Next we will derive the relation between the decision limits
A and B and the error probabilities

azP(D1|H0)7 B:P(DO|H1)7

where P(D; | H;) denotes the probability of deciding that
H; is true when in fact Hj is.

Consider a sequence x1,...,x, so that Dy is taken at
stage n. For each such sequence we have

f(xl,...,xn;ﬁl)zer(xl,...,a:n;Go), (1)

since this is the condition for deciding that H; is true.



Now let Dy, denote the set of such sequences. If we
assume that a decision is taken at some point with
probability one (which we shall prove in a moment), we get

P(Dy|Hy) = Y P(Di,|Hy)

= Z flx1,...,xn;601) derdey - - - dxy,

Din
> Z/D eBflxy,... xn;00) deidey - dr,
n 1n
= BP(D,|Hy),
in other words we have

1-8>ePa.



Reversing the role of Hy and H; and rewriting the
inequalities we obtain

1—
B <log ﬁ, A > log A
o 1

Now, in fact, let us examine how sharp these inequalities
were. Suppose the likelihood ratio only changed in very
small steps, so that the log-likelihood ratio was in fact
almost equal to B when Hy was decided. Then (1) would
read

flxy, ..., xn;00) = ePf(xr,...,20;00)
which would in turn lead to the approximate relation
1-p B
a 1—a’

B =~ log A ~log



The only error in this approximation is that we have ignored
the ‘overshoot’, i.e. the fact that when the log-likelihood
crosses the boundary, it would tend to satisfy A,, = B+ 6,
rather than A,, = B and similarly at the other boundary.

In most interesting cases this error is negligible for practical
purposes and there is now a long and well-established
practice in calculating decision limits by using the relations

(2)-



Assume that X; are independent and identically distributed.

Then
Zlog X“ 90 Z:Y

so A,, is what is known as a random walk.

The function log z is strictly concave. If we assume
f(561) # f(-;6p), Jensen's inequality yields

oot ol 10500
= B0 ) = B {log 7 G o
F(X5;561) —
< logE{f(Xi;%)'Ho}_ 7



and similarly we get
w =E(Y;|Hy) > 0.

The strong law of large numbers now yields that if Hy is
true, A,,/n will be close to E(Y | Hy) = uo < 0. Thus, if
we take € = —p10/2 it holds with probability one for some
N that

[AN/N — ol <e = Ay < N(e+ po) = Npo/2

and thus for any A we would have Ay < A provided N is
sufficiently large.

Similarly if H; is true, for any B we would have Ay > B
for N sufficiently large.



The simple graphical representation in the binomial case
has an easy generalisation to exponential families. In the
general (curved) exponential family case we get

A = {a(61) = a(00)} T Y #(X:) — nfe(61) — c(60)}
so if we let
u(z) = {a(61) — a(bo)} " t(2),
the decision boundaries are again parallel straight lines:
A+nn < Zu(Xl) < B+mnn

where 1 = ¢(61) — ¢(6p).



