More on the Sequential Probability Ratio Test

BS2 Statistical Inference, Lecture 15 Michaelmas Term 2004

Steffen Lauritzen, University of Oxford; December 1, 2004

The sequential probability ratio test

The SPRT for a simple hypothesis $H_{0}: \theta=\theta_{0}$ against a simple alternative $H_{1}: \theta=\theta_{1}$ has the following form:

- If $\Lambda_{n} \geq B$, decide that H_{1} is true and stop;
- If $\Lambda_{n} \leq A$, decide that H_{0} is true and stop;
- If $A<\Lambda_{n}<B$, collect another observation to obtain

$$
\Lambda_{n+1}
$$

where Λ_{n} is the log-likelihood ratio

$$
\Lambda_{n}=\lambda\left(X_{1}, \ldots, X_{n}\right)=\log \frac{L\left(\theta_{1} ; X_{1}, \ldots, X_{n}\right)}{L\left(\theta_{0} ; X_{1}, \ldots, X_{n}\right)}
$$

Example

Consider X_{i} independent Bernouilli variables with

$$
P\left(X_{i}=1 ; \theta\right)=1-P\left(X_{i}=0 ; \theta\right)=\theta .
$$

In this case we get

$$
\begin{aligned}
\lambda\left(x_{1}, \ldots, x_{n}\right) & =\log \frac{\theta_{1}^{\sum x_{i}}\left(1-\theta_{1}\right)^{n-\sum x_{i}}}{\theta_{0}^{\sum x_{i}}\left(1-\theta_{0}\right)^{n-\sum x_{i}}} \\
& =\left(\sum x_{i}\right) \log \frac{\theta_{1}\left(1-\theta_{0}\right)}{\theta_{0}\left(1-\theta_{1}\right)}+n \log \frac{1-\theta_{1}}{1-\theta_{0}} .
\end{aligned}
$$

If we assume $\theta_{1}>\theta_{0}$ the SPRT thus takes the form that we defer decision if

$$
\rho A+\eta \rho n<\sum X_{i}<\rho B+\eta \rho n
$$

where

$$
\rho^{-1}=\log \frac{\theta_{1}\left(1-\theta_{0}\right)}{\theta_{0}\left(1-\theta_{1}\right)}, \quad \eta=\log \frac{1-\theta_{0}}{1-\theta_{1}}
$$

which has a simple graphical representation, as the boundaries depend on n as parallel straight lines with slope $\rho \eta$ and intercepts $(\rho A, \rho B)$

Limits and error probabilities

Next we will derive the relation between the decision limits A and B and the error probabilities

$$
\alpha=P\left(D_{1} \mid H_{0}\right), \quad \beta=P\left(D_{0} \mid H_{1}\right)
$$

where $P\left(D_{i} \mid H_{j}\right)$ denotes the probability of deciding that H_{i} is true when in fact H_{j} is.

Consider a sequence x_{1}, \ldots, x_{n} so that D_{1} is taken at stage n. For each such sequence we have

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{n} ; \theta_{1}\right) \geq e^{B} f\left(x_{1}, \ldots, x_{n} ; \theta_{0}\right) \tag{1}
\end{equation*}
$$

since this is the condition for deciding that H_{1} is true.

Now let $D_{1 n}$ denote the set of such sequences. If we assume that a decision is taken at some point with probability one (which we shall prove in a moment), we get

$$
\begin{aligned}
P\left(D_{1} \mid H_{1}\right) & =\sum_{n} P\left(D_{1 n} \mid H_{1}\right) \\
& =\sum_{n} \int_{D_{1 n}} f\left(x_{1}, \ldots, x_{n} ; \theta_{1}\right) d x_{1} d x_{2} \cdots d x_{n} \\
& \geq \sum_{n} \int_{D_{1 n}} e^{B} f\left(x_{1}, \ldots, x_{n} ; \theta_{0}\right) d x_{1} d x_{2} \cdots d x_{n} \\
& =e^{B} P\left(D_{1} \mid H_{0}\right),
\end{aligned}
$$

in other words we have

$$
1-\beta \geq e^{B} \alpha
$$

Reversing the role of H_{0} and H_{1} and rewriting the inequalities we obtain

$$
B \leq \log \frac{1-\beta}{\alpha}, \quad A \geq \log \frac{\beta}{1-\alpha}
$$

Now, in fact, let us examine how sharp these inequalities were. Suppose the likelihood ratio only changed in very small steps, so that the log-likelihood ratio was in fact almost equal to B when H_{1} was decided. Then (1) would read

$$
f\left(x_{1}, \ldots, x_{n} ; \theta_{1}\right) \approx e^{B} f\left(x_{1}, \ldots, x_{n} ; \theta_{0}\right)
$$

which would in turn lead to the approximate relation

$$
\begin{equation*}
B \approx \log \frac{1-\beta}{\alpha}, \quad A \approx \log \frac{\beta}{1-\alpha} \tag{2}
\end{equation*}
$$

The only error in this approximation is that we have ignored the 'overshoot', i.e. the fact that when the log-likelihood crosses the boundary, it would tend to satisfy $\Lambda_{n}=B+\delta_{n}$ rather than $\Lambda_{n}=B$ and similarly at the other boundary.

In most interesting cases this error is negligible for practical purposes and there is now a long and well-established practice in calculating decision limits by using the relations (2).

Are we certain to make a decision?

Assume that X_{i} are independent and identically distributed. Then

$$
\Lambda_{n}=\sum_{1}^{n} \log \frac{f\left(X_{i} ; \theta_{1}\right)}{f\left(X_{i} ; \theta_{0}\right)}=\sum_{1}^{n} Y_{i}
$$

so Λ_{n} is what is known as a random walk.
The function $\log x$ is strictly concave. If we assume $f\left(\cdot ; \theta_{1}\right) \neq f\left(\cdot ; \theta_{0}\right)$, Jensen's inequality yields

$$
\begin{aligned}
\mu_{0}=\mathbf{E}\left(Y_{i} \mid H_{0}\right) & =\mathbf{E}\left\{\left.\log \frac{f\left(X_{i} ; \theta_{1}\right)}{f\left(X_{i} ; \theta_{0}\right)} \right\rvert\, H_{0}\right\} \\
& <\log \mathbf{E}\left\{\left.\frac{f\left(X_{i} ; \theta_{1}\right)}{f\left(X_{i} ; \theta_{0}\right)} \right\rvert\, H_{0}\right\}=0
\end{aligned}
$$

and similarly we get

$$
\mu_{1}=\mathbf{E}\left(Y_{i} \mid H_{1}\right)>0
$$

The strong law of large numbers now yields that if H_{0} is true, Λ_{n} / n will be close to $\mathbf{E}\left(Y \mid H_{0}\right)=\mu_{0}<0$. Thus, if we take $\epsilon=-\mu_{0} / 2$ it holds with probability one for some N that

$$
\left|\Lambda_{N} / N-\mu_{0}\right|<\epsilon \Longrightarrow \Lambda_{N}<N\left(\epsilon+\mu_{0}\right)=N \mu_{0} / 2
$$

and thus for any A we would have $\Lambda_{N}<A$ provided N is sufficiently large.

Similarly if H_{1} is true, for any B we would have $\Lambda_{N}>B$ for N sufficiently large.

Exponential families

The simple graphical representation in the binomial case has an easy generalisation to exponential families. In the general (curved) exponential family case we get

$$
\Lambda_{n}=\left\{a\left(\theta_{1}\right)-a\left(\theta_{0}\right)\right\}^{\top} \sum t\left(X_{i}\right)-n\left\{c\left(\theta_{1}\right)-c\left(\theta_{0}\right)\right\}
$$

so if we let

$$
u(x)=\left\{a\left(\theta_{1}\right)-a\left(\theta_{0}\right)\right\}^{\top} t(x),
$$

the decision boundaries are again parallel straight lines:

$$
A+\eta n<\sum u\left(X_{i}\right)<B+\eta n
$$

where $\eta=c\left(\theta_{1}\right)-c\left(\theta_{0}\right)$.

