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The sequential probability ratio test

The SPRT for a simple hypothesis H0 : θ = θ0 against a
simple alternative H1 : θ = θ1 has the following form:

• If Λn ≥ B, decide that H1 is true and stop;

• If Λn ≤ A, decide that H0 is true and stop;

• If A < Λn < B, collect another observation to obtain
Λn+1,

where Λn is the log-likelihood ratio

Λn = λ(X1, . . . , Xn) = log
L(θ1;X1, . . . , Xn)
L(θ0;X1, . . . , Xn)

.
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Example

Consider Xi independent Bernouilli variables with

P (Xi = 1; θ) = 1− P (Xi = 0; θ) = θ.

In this case we get

λ(x1, . . . , xn) = log
θ

∑
xi

1 (1− θ1)n−
∑

xi

θ
∑

xi

0 (1− θ0)n−
∑

xi

=
(∑

xi

)
log

θ1(1− θ0)
θ0(1− θ1)

+ n log
1− θ1

1− θ0
.

If we assume θ1 > θ0 the SPRT thus takes the form that
we defer decision if

ρA + ηρn <
∑

Xi < ρB + ηρn,
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where

ρ−1 = log
θ1(1− θ0)
θ0(1− θ1)

, η = log
1− θ0

1− θ1
,

which has a simple graphical representation, as the
boundaries depend on n as parallel straight lines with slope
ρη and intercepts (ρA, ρB)

4



Limits and error probabilities

Next we will derive the relation between the decision limits
A and B and the error probabilities

α = P (D1 |H0), β = P (D0 |H1),

where P (Di |Hj) denotes the probability of deciding that
Hi is true when in fact Hj is.

Consider a sequence x1, . . . , xn so that D1 is taken at
stage n. For each such sequence we have

f(x1, . . . , xn; θ1) ≥ eBf(x1, . . . , xn; θ0), (1)

since this is the condition for deciding that H1 is true.
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Now let D1n denote the set of such sequences. If we
assume that a decision is taken at some point with
probability one (which we shall prove in a moment), we get

P (D1 |H1) =
∑

n

P (D1n |H1)

=
∑

n

∫
D1n

f(x1, . . . , xn; θ1) dx1dx2 · · · dxn

≥
∑

n

∫
D1n

eBf(x1, . . . , xn; θ0) dx1dx2 · · · dxn

= eBP (D1 |H0),

in other words we have

1− β ≥ eBα.
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Reversing the role of H0 and H1 and rewriting the
inequalities we obtain

B ≤ log
1− β

α
, A ≥ log

β

1− α
.

Now, in fact, let us examine how sharp these inequalities
were. Suppose the likelihood ratio only changed in very
small steps, so that the log-likelihood ratio was in fact
almost equal to B when H1 was decided. Then (1) would
read

f(x1, . . . , xn; θ1) ≈ eBf(x1, . . . , xn; θ0)

which would in turn lead to the approximate relation

B ≈ log
1− β

α
, A ≈ log

β

1− α
. (2)
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The only error in this approximation is that we have ignored
the ‘overshoot’, i.e. the fact that when the log-likelihood
crosses the boundary, it would tend to satisfy Λn = B + δn

rather than Λn = B and similarly at the other boundary.

In most interesting cases this error is negligible for practical
purposes and there is now a long and well-established
practice in calculating decision limits by using the relations
(2).
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Are we certain to make a decision?

Assume that Xi are independent and identically distributed.
Then

Λn =
n∑
1

log
f(Xi; θ1)
f(Xi; θ0)

=
n∑
1

Yi

so Λn is what is known as a random walk.

The function log x is strictly concave. If we assume
f(·; θ1) 6= f(·; θ0), Jensen’s inequality yields

µ0 = E(Yi |H0) = E
{

log
f(Xi; θ1)
f(Xi; θ0)

|H0

}
< log E

{
f(Xi; θ1)
f(Xi; θ0)

|H0

}
= 0,
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and similarly we get

µ1 = E(Yi |H1) > 0.

The strong law of large numbers now yields that if H0 is
true, Λn/n will be close to E(Y |H0) = µ0 < 0. Thus, if
we take ε = −µ0/2 it holds with probability one for some
N that

|ΛN/N − µ0| < ε =⇒ ΛN < N(ε + µ0) = Nµ0/2

and thus for any A we would have ΛN < A provided N is
sufficiently large.

Similarly if H1 is true, for any B we would have ΛN > B
for N sufficiently large.
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Exponential families

The simple graphical representation in the binomial case
has an easy generalisation to exponential families. In the
general (curved) exponential family case we get

Λn = {a(θ1)− a(θ0)}>
∑

t(Xi)− n{c(θ1)− c(θ0)}

so if we let

u(x) = {a(θ1)− a(θ0)}>t(x),

the decision boundaries are again parallel straight lines:

A + ηn <
∑

u(Xi) < B + ηn

where η = c(θ1)− c(θ0).
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