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The maximized likelihood ratio test

Recall that the MLRT (or LRT for short), has critical
region of the form

Λ = λ(X) = −2 log
L(θ0;X)

L(θ̂;X)
> K.

One particular advantage of this test statistic is that it
immediately extends to the multiparameter case, as the
definition of this statistic as above has no reference to the
dimension of the parameter space.

Indeed, the LRT also has easy extension to the case where
the null hypothesis H0 : θ ∈ Θ0 is composite, i.e. where Θ0

has more than one value.
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For a composite hypothesis we define the likelihood ratio
test statistic as

λ(x) = −2 log
supθ∈Θ0

L(θ;x)
supθ∈Θ L(θ;x)

= −2 log
L(ˆ̂θ;x)

L(θ̂;x)
,

where θ̂ = arg maxθ∈Θ and
ˆ̂
θ = arg maxθ∈Θ0 .

As Θ0 ⊆ Θ, we would generally have that

θ̂ ∈ ΘA, sup
θ∈Θ

L(x; θ) = sup
θ∈ΘA

L(x; θ) = L(x; θ̂).

The MLRT can thus bee seen as a standard LRT, just
comparing the most likely value of θ within the hypothesis
with the most likely value within the alternative.
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Example

Consider the case where X = (X1, . . . , Xn) is a sample
from a normal distribution N (µ, σ2), where µ > 0 and
σ2 > 0 are unknown and consider the hypothesis

H0 : σ2 = µ2.

In this case we have, if x̄ > 0 that

µ̂ = x̄, σ̂2 =
1
n

∑
i

(xi − µ̂)2 = SS/n− x̄2.

If x̄ ≤ 0 the MLE does not exist as we have restricted the
parameter space to have µ > 0.

We get

log L(µ̂) = −n

2
log(2π)− n

2
log σ̂2 − n/2
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and

log L(ˆ̂µ) = −n

2
log(2π)− n log ˆ̂µ− SS

2ˆ̂µ2
+

S

ˆ̂µ
− n/2

where

ˆ̂µ =
−S +

√
S2 + 4nSS

2n
, ˆ̂σ2 = ˆ̂µ2

so

Λ = n log
ˆ̂σ2

σ̂2
+

(
SS

ˆ̂µ2
− 2S

ˆ̂µ

)
.

The first term reflects differences in the variance estimates
whereas the second term directly reflects deviations from
the hypothesis.
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Asymptotic properties

The LRT is extremely useful and therefore widely used. Not
only does it apply to a wide range of testing problems, but
its large sample distribution is generally very simple.

Indeed if Θ is an open and connected subset of Rd and Θ0

is specified by restriction of the parameter space as

θ ∈ Θ0 ⇐⇒ h(θ) = 0

where the function

h(θ) = (h1(θ), . . . , hk(θ))

is twice continuously differentiable and its matrix of
derivatives

H(θ) =
{

∂hr(θ)
∂θs

}
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has constant and full rank k for θ ∈ Θ0 and if further the
usual regularity conditions are fulfilled, it holds that

Λ D→ Y

where Y follows a χ2-distribution with k degrees of
freedom.

The case of a simple hypothesis has k = d and
h(θ) = θ − θ0 and the asymptotic distribution of Λ is then
χ2(d).

The proof of this general result is a bit involved so we shall
only look at the case of a simple hypothesis.

In the example just considered, we could let
h(µ, σ2) = σ2 − µ2 so here Λ is asymptotically distributed
as χ2(1).
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The case of a simple hypothesis

Here is a sketch of the proof in the case of a simple
hypothesis Θ0 = {θ0}.

First we use Taylor’s theorem to expland log L(θ0) around

the MLE θ̂:

log L(θ0) = log L(θ̂) + S(θ̂)(θ0 − θ̂)

−1
2
(θ0 − θ̂)>j(θ̂)(θ0 − θ̂) + R(θ0, θ̂).

Now ignore the remainder term and use that S(θ̂) = 0:

log L(θ0) ≈ log L(θ̂)− 1
2
(θ0 − θ̂)>j(θ̂)(θ0 − θ̂).
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Move log L(θ̂) to the other side of this equation and
multiply by −2 to obtain

Λ ≈ (θ0 − θ̂)>j(θ̂)(θ0 − θ̂).

Slutsky’s theorem in combination with the facts that

√
n(θ̂ − θ0)

D→ N{0, i(θ0)−1}, j(θ̂)/n
P→ i(θ0)

now yields the result.
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Approximate likelihood ratio tests

The proof of the asymptotic result for the likelihood ratio
test, also in the general case, essentially relies upon
approximating Λ by a quadratic form as

Λ ≈ n(θ̂ − ˆ̂
θ)>C(θ̂ − ˆ̂

θ)

where C is a consistent estimate of the information matrix
at the true value i(θ0).

As in the one-parameter case it also makes sense to use the
right hand side directly as a test statistic.

There are essentially four possibilities for the choice of C:

C1 = i(θ̂), C2 = i(ˆ̂θ), C3 = jn(θ̂)/n, C4 = jn(ˆ̂θ)/n,
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all leading to test statistics which have an asymptotic
χ2(k) distribution if the null hypothesis is true.

This leads to the Wald statistics

W = n(θ̂ − ˆ̂
θ)>i(θ̂)(θ̂ − ˆ̂

θ), W̃ = (θ̂ − ˆ̂
θ)>jn(θ̂)(θ̂ − ˆ̂

θ)

or the χ2 statistics

X2 = n(θ̂ − ˆ̂
θ)>i(ˆ̂θ)(θ̂ − ˆ̂

θ), X̃2 = (θ̂ − ˆ̂
θ)>jn(ˆ̂θ)(θ̂ − ˆ̂

θ).

As in the one-parameter case, care should be taken with
the Wald statistic as it may have very undesirable
properties when the hypothesis is far from being true.
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