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Locally Most Powerful Tests

Recall that for testing a simple hypothesis with Θ0 = {θ0}
vs. a simple alternative ΘA = {θ1}, the LRT with critical
region

C =
{

x | L(θ1;x)
L(θ0;x)

> K

}
is optimal of its size, i.e. for fixed size α = Pθ0(C), it has
maximal power φ(θ1) = Pθ1(C) under the alternative.

It is difficult to find a test which is optimal against all
alternatives, i.e. uniformly most powerful.

As almost any test will detect large deviations from the
hypothesis we could attempt to find a test which is most
powerful for small deviations from the hypothesis.
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Suppose now that θ1 = θ0 + δ is close to θ0, i.e. δ is small.
Taylor’s theorem now yields

log
L(θ1;x)
L(θ0;x)

= S(x; θ0)δ + R(x, δ) ≈ S(x; θ0)δ,

where S is the score statistic. Thus the test with critical
region

C = {x | S(x; θ0) > K}

is optimal for alternatives close to θ0. We also say that this
test is Locally Most Powerful in the direction δ.

Note that if θ1 < θ0, the sign changes and the LMP test
against local alternatives in the opposite direction takes the
form

C = {x | S(x; θ0) < K} .
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Example

Consider X = (X1, . . . , Xn) independent and identically
distributed as N (µ, µ2) with µ > 0 unknown.

If we let S =
∑

Xi and SS =
∑

X2
i the score statistic is

S(x;µ) = −n

µ
+

SS

µ3
− S

µ2
.

Thus the critical region for the LMP test of the hypothesis
µ = 1 against local alternatives with µ > 1 has the form

S(x; 1) = −n + SS − S > K

or, equivalently
SS − S > K ′.
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The score test

To determine the critical value K for the LMP we need in
principle to know the distribution of the score statistic.

However, this is generally intractable so we rely on the fact
that the score statistic has an approximate normal
distribution with the Fisher information as its variance.

Thus, we can construct an asymptotic test by calculating
the critical region as

S(x; θ0) >
√

ni(θ0)z1−α

where z1−α is the 1− α quantile in the standard normal
distribution N (0, 1) and i(θ0) is the Fisher information in a
single observation.
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This large sample test is known as a score test.

For the example just considered we have i(µ) = 3n/µ2 so
the critical region of the score test for µ = 1 against µ > 1
becomes

S(x; 1) = −n + SS − S >
√

3nz1−α,

where z1−α is the (1− α)-quantile in the standard normal
distribution N (0, 1).

This test is particularly simple to calculate in this and many
other cases where the Fisher information has a simple form.

The score test can easily be modified to a test for a
two-sided alternative by alluding to the fact that since

S(X; θ) a∼ N{0, ni(θ)},
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Slutsky’s theorem implies that

{S(X; θ)}2

ni(θ0)
D→ χ2(1),

where χ2(1) is the χ2-distribution with 1 degree of
freedom. So the two-sided score test has critical region

{S(x; θ0)}2 > ni(θ0)χ2(1)1−α.

In the example considered, this takes the form

(SS − S − n)2 > 3nχ2(1)1−α

where χ2(1)1−α is the (1− α)-quantile in the
χ2-distribution.
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The χ2 test

Another alternative to construct a test statistic for the
hypothesis is to directly use the asymptotic distribution of
the maximum likelihood estimate. Since it holds generally
that

θ̂
a∼ N

{
θ,

1
ni(θ)

}
.

Again alluding to Slutsky’s theorem, a test statistic for the
hypothesis θ = θ0 against the two-sided alternative θ̂ 6= θ0

can be constructed by using the critical region

X2 = ni(θ0)(θ̂ − θ0)2 > χ2(1)1−α.

This test is known as the χ2-test.
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Returning to the example

In the example considered, the MLE µ̂ was given as

µ̂ =
−S +

√
S2 + 4nSS

2n

so the χ2 test for µ = 1 has critical region

X2 = 3n

(
−S +

√
S2 + 4nSS

2n
− 1

)2

> χ2(1)1−α.

Note that this appears to be much more complex than the
score test. However, as one would often have calculated µ̂
anyway, this complication may not play a practical role.
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Wald’s test

There are many alternatives for these large sample tests.

Wald’s test uses the estimated Fisher information i(θ̂)
instead of i(θ0) in the χ2-test yielding the critical region

W = ni(θ̂)(θ̂ − θ0)2 > χ2(1)1−α.

This is convenient when θ̂ has been calculated by the
method of scoring, as then i(θ̂) has already been calculated
during the iterative step, e.g. in the glm routine.

In the example, the Wald test statistic becomes

W =
3n

µ̂2

(
−S +

√
S2 + 4nSS

2n
− 1

)2

> χ2(1)1−α.
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The danger in using Wald’s test is that it may have small
power when θ very different from θ0, as then i(θ̂) might
become small, as is the case in the example above.

Comparing the test statistics in the example, we find

W = X2/µ̂2

so for large µ, X2 is better at detecting deviations from H0:

lim
µ̂→∞

W (µ̂) = 3n whereas lim
µ̂→∞

X2(µ̂) = ∞.

On the other hand

lim
µ̂→0

W (µ̂) = ∞ whereas lim
µ̂→0

X2(µ̂) = 3n,

so the Wald test is more powerful for small alternatives in
this particular example.
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Observed information tests

A finalvariant of the Wald test, we may of course use the
observed rather than the expected information to yield the
critical region

W̃ = j(θ̂)(θ̂ − θ0)2 > χ2(1)1−α,

Where

j(θ̂) = − ∂2

∂θ2
log f(X; θ̂)

which is positive when θ̂ is the MLE.

As the Wald statistic is easy to calculate when the method
of scoring is used is easy to calculate, this test statistic is
convenient when the Newton–Raphson method is used.
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In the example we get

W̃ =
(

n

µ̂2
+

SS

µ̂4

)(
−S +

√
S2 + 4nSS

2n
− 1

)2

.

But this variant of the Wald statistic has the same problem
with large deviations from the hypothesis as the version
based on expected information.
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The maximized likelihood ratio

Instead of trying to obtain high power close to the
hypothesis, as in a locally most powerful test, it seems
sensible to maximize power at the most likely value of the
parameter θ i.e. at the MLE θ̂.

This leads to the (maximized) likelihood ratio test MLRT,
commonly just known as the likelihood ratio test LRT, with
critical region of the form

Λ = −2 log
L(X; θ0)

L(X; θ̂)
> K.

We have taken logarithms and multiplied by 2.

As we shall see in the next lecture, the Wald and χ2-tests
can just be seen as Taylor-approximations to this test.
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In our example we get

Λ = 2n log µ̂− SS

µ̂2
+

2S

µ̂
+ SS − 2S

which again yields an important alternative to the other
large sample tests.
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