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Hypothesis testing

We consider a family of densities F = {f(x; θ), θ ∈ Θ} on
a sample space X and wish to test the null hypothesis

H0 : θ ∈ Θ0

vs. the alternative hypothesis

θ ∈ ΘA = Θ \Θ0,

where Θ0 ⊆ Θ.

Within the Neyman–Pearson theory, a (non-randomised)
test is determined by a critical region C, so that H0 is
rejected if X ∈ C and H0 is accepted if X 6∈ C.
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Power and level of significance

The probability of rejecting the hypothesis in a test with
critical region C is the power function:

φ(θ) = Pθ(X ∈ C).

The size or significance level α of the test is the largest
possible probability of making an error of type I, i.e. of
rejecting a true null hypothesis:

α = sup
θ∈Θ0

Pθ(X ∈ C) = sup
θ∈Θ0

φ(θ).

Thus the size of the test is the maximal power under the
null hypothesis.
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If θ ∈ ΘA, the probability of making an error of type II is

β = β(θ) = 1− φ(θ)

i.e. the probability of accepting H0 when H0 is false.
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Constructing critical regions

A common way of constructing critical regions is to use a
test statistic T = t(X) in such a way that large values of T
are good indicators of the null hypothesis being false.

We then construct a test with critical region

C = {x | t(x) > t0}.

If we choose the critical value t0 to satisfy

α = sup
θ∈Θ0

Pθ(T ≥ t0)

we get a test of size α.
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p-values and significance levels

The p-value when t(X) = t has been observed is

p = sup
θ∈Θ0

Pθ(T ≥ t)

i.e. the largest possible probability of obtaining a value of T
which is at least as extreme as the observed, under the
assumption that the null hypothesis is true.

If the p-value is very small this will then be taken as strong
evidence against the null hypothesis, corresponding to
rejecting the hypothesis exactly when p ≤ α.

In this sense, the p-value of a test outcome is the largest
possible size needed to accept the null hypothesis.
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Example

Consider a sample X = (X1, . . . , Xn) from a normal
distribution N (µ, σ2), with µ and σ2 > 0 unknown sand
consider the hypothesis

H0 : σ2 ≤ µ2 vs. the alternative H0 : σ2 > µ2.

One could directly choose to use the test-statistic

t(X) = S2/X̄2

where

X̄ =
1
n

∑
Xi, S2 =

1
n− 1

∑
i

(Xi − X̄)2.

Note that t′(X) = S2 − kX̄2 might as well have been
chosen but this leads to quite different critical regions.
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Optimal testing

The Neyman–Pearson theory is concerned with finding
optimal tests, i.e. optimal critical regions or, equivalently,
optimal test statistics.

Most commonly one attempts to maximize power under the
alternative while keeping the size under control or, in other
words, minimize the type II error probability while
controlling the probability of an error of type I.

A more symmetric approach is to minimize a given linear
combination of type I and type II error probabilites, but this
leads essentially to the same testing procedures.
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Controversy between Fisher and Neyman

One of the deepest controversies in the history of statistics
is that between J. Neyman and R. A. Fisher which went on
as long as both were alive.

The fierce discussions between these two giants of
statistical science were held in an ever more unpleasant and
relentless tone, orally as well as in public writing.

The dispute was concerned with many aspects of statistics,
but in particular with that of hypothesis testing.

This divide is, in my personal opinion, much deeper than
that between Bayesian and Frequentist inference.
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Cournot’s principle

Briefly and inadequately, the dispute on testing was rooted
in Fisher’s strong opposed to the mechanical
‘acceptance/rejection’ which plays a dominating role in the
Neyman–Pearson theory.

Fisher would rather report the p-values and then let the
scientist interpret the evidence.

The p-value itself may best be interpreted according towhat
we could call Cournot’s principle:

Events with small probability do not happen!

Thus, if p is small, the null hypothesis cannot be sustained
and must therefore be considered as falsified.
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Testing in different contexts

Personally, I find point of view behind the Neyman–Pearson
theory appropriate when testing has to be performed
repeatedly, for example in quality control, say when a low
propotion of defective items must be maintained by routine
inspection procedures, and decisions about accepting or
rejecting batches of items must be taken.

For scientific inference, the decision aspect is less prominent
and I find concepts such as critical region, power and size
to be less illuminating.

Hypothesis testing is made in many different contexts and
each context may emphasize particular aspects of the
mathematical theory as being more and less relevant.
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Neyman–Pearson lemma

This fundamental lemma in the theory of hypothesis testing
is concerned with the case of a simple hypothesis having
Θ0 = {θ0} vs. a simple alternative ΘA = {θ1}.

In this case it holds that any test with critical region of the
form

C =
{

x | L(θ1;x)
L(θ0;x)

> K

}
is optimal of its size, i.e. for fixed size α = Pθ0(C), it has
maximal power φ(θ1) = Pθ1(C) under the alternative.

In other words, if the observation is much more likely under
the alternative hypothesis than under the null, we reject the
null hypothesis. This test is the Likelihood Ratio Test
(LRT).
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LRT in exponential families

The Likelihood Ratio Test has a simple form in a
one-dimensional exponential family. We get

log
L(θ1;x)
L(θ0;x)

= (θ1 − θ0)t(x) + c(θ0)− c(θ1).

So, if θ1 > θ0 the critical region has the form

C = {x | t(x) > t0},

where T = t(x) is the canonical sufficient statistic. If
θ1 < θ0 the inequality in the expression for the critical
region must be reversed.
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One-sided hypothesis and alternative

Two important issues about the LRT for a simple
hypothesis vs. a simple alternative should be noted:

• The critical region has a simple form, i.e. a one-sided
interval for the canonical statistic;

• The critical region does not depend on the specific
values (θ0, θ1) as long as θ0 < θ1 (or the converse).

It follows that the critical region for the LRT in a
one-dimensional canonical exponential family is also
optimal for the hypotheses

H0 : θ ≤ θ0 vs. the alternative HA : θ > θ0,

i.e. for a one-sided alternative to a one-sided hypothesis.
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Problems with the Neyman–Pearson theory

A major weakness of the theory is that in other than those
very special cases just mentioned, there is typically no
optimal (Uniformly Most Powerful) test.

This has been sought remedied by demanding in addition
that a test should be unbiased

φ(θ) ≥ α for θ ∈ ΘA,

α-similar
φ(θ) = α for all θ ∈ Θ0,

or have certain invariance properties.

These additional demands do to some extent ensure the
existence of optimal tests in many cases, but far from all.
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