BS2 Problem Sheet 3

Question 4
The probability densities

$$
f(x ; \theta)=\frac{e^{\theta x-c(\theta)}}{1+x^{4}}, \quad \text { for } x \geq 0
$$

form an exponential family for $\theta \leq 0$ with log-normalising function

$$
c(\theta)=\log \left(\int_{0}^{\infty} \frac{e^{\theta x}}{1+x^{4}} d x\right)
$$

The canonical sufficient statistic is x and since this is an exponenential family the expectation and variance of X are

$$
\begin{equation*}
\mathbf{E}_{\theta}(X)=c^{\prime}(\theta) \quad \text { and } \quad \mathbf{V}_{\theta}(X)=c^{\prime \prime}(\theta), \quad \text { for } \theta<0 \tag{*}
\end{equation*}
$$

(b) By direct integration

$$
\mathbf{E}_{0}(X)=\int_{0}^{\infty} \frac{x e^{-c(0)}}{1+x^{4}} d x=\frac{\pi}{4} e^{-c(0)}=1 / \sqrt{ } 2
$$

since

$$
e^{c(0)}=\int_{0}^{\infty} \frac{1}{1+x^{4}} d x=\frac{\pi}{4} \sqrt{ } 2
$$

From $(*)$ it follows that $\mathbf{E}_{\theta}(X)$ is non-decreasing since its derivative $c^{\prime \prime}(\theta)$ is the variance which is necessarily non-negative. It follows that $\mathbf{E}_{\theta}(X)$ cannot exceed $1 / \sqrt{ } 2$, so that the likelihood equation has no solution when $x>1 / \sqrt{ } 2$.
(c) The derivative of $\log (f(x ; \theta))$ with respect to θ is $x-c^{\prime}(\theta)$ which is always positive when $x>1 / \sqrt{ } 2$. It follows that $f(x ; \theta)$ has its maximum at $\theta=0$ for these cases.
Parts (e) and (d) then follow similarly again with $\theta \leq 0$ but this time from first principles

$$
\mathbf{E}_{0}(X)=\int_{0}^{\infty} \frac{x e^{-c(0)}}{1+x^{2}} d x=\frac{\pi}{4} e^{-c(0)}=\infty
$$

where

$$
e^{c(0)}=\int_{0}^{\infty} \frac{1}{1+x^{2}} d x=\frac{\pi}{2}
$$

so that $\mathbf{E}_{0}(X)$ is not bounded and the likelihood equation always has a solution.

