BS2 Problem Sheet 3
Question 4
The probability densities
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form an exponential family for § < 0 with log-normalising function
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The canonical sufficient statistic is « and since this is an exponenential family the ex-
pectation and variance of X are

E¢(X)=(0) and Vy(X)=c"(0), forf<D0. (%)

(b) By direct integration
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From (x) it follows that Ey(X) is non-decreasing since its derivative ¢” () is the variance
which is necessarily non-negative. It follows that Eg(X) cannot exceed 1/4/2, so that
the likelihood equation has no solution when x > 1/,/2.

(c) The derivative of log(f(x;0)) with respect to 0 is x — ¢/(6) which is always positive
when = > 1/4/2. It follows that f(z;6) has its maximum at § = 0 for these cases.

Parts (e) and (d) then follow similarly again with # < 0 but this time from first principles
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so that Ey(X) is not bounded and the likelihood equation always has a solution.

where




