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1. Consider samples x and y and let M1 denote the model considering X and
Y independent with binomial distributions

P (X = x) =

(
n

x

)
θx(1− θ)n−x, P (Y = y) =

(
n

y

)
ηy(1− η)n−y,

where 0 ≤ θ, η ≤ 1 are both unknown.

Let similarly M2 denote the model where θ = η and everything else is as for
M1.

(a) Calculate the maximized log-likelihood ratio statistic D = −2 log Λ for
comparing the two models;
Under M1,

θ̂ = x/n, η̂ = y/n

whereas under M2,
θ̂2 = η̂2 = (x+ y)/(2n)

so

Λ =
L(θ̂2)

L((̂θ)L(η̂)
=
{(x+ y)/(2n)}x+y{1− (x+ y)/(2n)}2n−x−y

(x/n)x(1− x/n)n−x(y/n)y(1− y/n)n−y
,

yielding the familiar (?) expression

D = −2 log Λ = 2
∑

OBS log
OBS
EXP

= 2x log
2x
x+ y

+ 2y log
2y
x+ y

+(2n− x) log
2n− 2x

2n− x− y
+ 2(n− x) log

2n− 2x
2n− x− y

.

(b) For uniform prior distributions on θ, η, calculate the Bayes factor for
comparing M1 to M2;
We have∫ 1

0
θx(1− θ)n−x dθ =

Γ(x+ 1)Γ(n− x+ 1)
Γ(n+ 2)

=
x!(n− x)!
(n+ 1)!

and thus get

B12 =
f(x, y |M1)
f(x, y |M2)

=

(2n+1
n+1

)(x+y
x

)(2n−x−y
n−x

) .
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(c) Find the BIC approximation to the Bayes factor, with or without
including all terms, and comment on its accuracy;
M1 has 2 parameters and M2 has 1 so basic BIC is

∆BIC = BIC1 − BIC2 = (D − log n)/2.

With correction factor it will be

2∆BIC∗ = D−log(2πn)−log
n

x(n− x)
−log

n

y(n− y)
+log

2n
(x+ y)(2n− x− y)

.

(d) Find the AIC for the two models

2∆AIC = D + 2

(e) Compare the model determination procedures using the three criteria
for large values of n.
If M2 holds, the deviance D will be approximately χ2(1) and the BIC
(as well as the Bayes factor) will favour M2. Otherwise D will grow at
a rate of n and BIC will favour M1.

2. Consider regression data (x, y) = ((x1, y1), . . . , (xn, yn)) with x considered
fixed and the responses Yi being independent with

Yi ∼ N{µk(xi), φ},

where µk is determined by model Mk as

M1 : µ1(xi) = α; M2 : µ2(xi) = βxi; M3 : µ3(xi) = γx2
i .

(a) For (improper) prior distributions πi(η, φ) ∝ φ−1, where either η = α,
η = β, or η = γ, calculate expressions for the Bayes factor for comparing
any pair of these models;
Write µ(xi) = θjzij where zij is either 1, xi, or x2

i . Next, partition the
sum of squares as∑

(yi − θjzij)2 =
∑

(yi − θ̂jzij)2 + (θ̂j − θ)2
∑

i

z2
ij = sj + n∗j (θ̂j − θ)2.

where θ̂j = (
∑
yizij)/(

∑
z2
ij) and n∗j =

∑
i z

2
ij . This yields the posterior

density as

πj(θj , φ) ∝ φ−(n+1)/2 exp{− sj

2φ
−
n∗j (θj − θ̂j)2

2φ
}.

Integrating yields

Bjl ∝

√√√√n∗js
n−1
j

n∗l s
n−1
l

2



and the Bayes factor favours the model with a small residual error, but
corrects for the variation in the explanatory variable. The controversial
issue is that it is generally not clear that different θj are meaningfully
considered to be on the same scale.

(b) Find expressions for the BIC approximation to these models;
Since the MLE for (θj , φ) is (θ̂j , sj/n) the maximizes log-likelihood is

l(θ̂j , sj/n) =
n

2
log sj + constant

so the BIC is equivalent to

BIC =
n

2
log sj + log n

Since the models all have the same number of parameters, the BIC
simply favours the model with the smallest residual error.

(c) Find expressions for the AIC for these models;

AIC =
n

2
log sj + 1

same happens here

(d) Find expressions for Mallows’ Cp.
Mallows Cp is per definition

Cp = sj + 2(1− n)σ2

and thus ranks the models by their residual sum of squares.

(e) Compare the model determination procedures.
Has been done more or less above. The only critical issue is the Bayesian
correction using n∗j . If we from the beginning normalize z such as to
have n∗j = 1 for all j, this factor does not enter. If this is not done,
the ”uniform” prior on θ means different things in the three cases and
this is very problematic. Also uniform distributions can have different
scales. .

Steffen L. Lauritzen, University of Oxford March 2, 2009
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