1. Consider samples x and y and let M_{1} denote the model considering X and Y independent with binomial distributions

$$
P(X=x)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}, \quad P(Y=y)=\binom{n}{y} \eta^{y}(1-\eta)^{n-y}
$$

where $0 \leq \theta, \eta \leq 1$ are both unknown.
Let similarly M_{2} denote the model where $\theta=\eta$ and everything else is as for M_{1}.
(a) Calculate the maximized \log-likelihood ratio statistic $D=-2 \log \Lambda$ for comparing the two models;
Under M_{1},

$$
\hat{\theta}=x / n, \quad \hat{\eta}=y / n
$$

whereas under M_{2},

$$
\hat{\theta}_{2}=\hat{\eta}_{2}=(x+y) /(2 n)
$$

so

$$
\Lambda=\frac{L\left(\hat{\theta}_{2}\right)}{L(\hat{(} \theta) L(\hat{\eta})}=\frac{\{(x+y) /(2 n)\}^{x+y}\{1-(x+y) /(2 n)\}^{2 n-x-y}}{(x / n)^{x}(1-x / n)^{n-x}(y / n)^{y}(1-y / n)^{n-y}}
$$

yielding the familiar (?) expression

$$
\begin{aligned}
D= & -2 \log \Lambda=2 \sum \mathrm{OBS} \log \frac{\mathrm{OBS}}{\mathrm{EXP}} \\
= & 2 x \log \frac{2 x}{x+y}+2 y \log \frac{2 y}{x+y} \\
& +(2 n-x) \log \frac{2 n-2 x}{2 n-x-y}+2(n-x) \log \frac{2 n-2 x}{2 n-x-y}
\end{aligned}
$$

(b) For uniform prior distributions on θ, η, calculate the Bayes factor for comparing M_{1} to M_{2};
We have

$$
\int_{0}^{1} \theta^{x}(1-\theta)^{n-x} d \theta=\frac{\Gamma(x+1) \Gamma(n-x+1)}{\Gamma(n+2)}=\frac{x!(n-x)!}{(n+1)!}
$$

and thus get

$$
B_{12}=\frac{f\left(x, y \mid M_{1}\right)}{f\left(x, y \mid M_{2}\right)}=\frac{\binom{2 n+1}{n+1}}{\binom{x+y}{x}\binom{2 n-x-y}{n-x}}
$$

(c) Find the BIC approximation to the Bayes factor, with or without including all terms, and comment on its accuracy;
M_{1} has 2 parameters and M_{2} has 1 so basic BIC is

$$
\Delta \mathrm{BIC}=\mathrm{BIC}_{1}-\mathrm{BIC}_{2}=(D-\log n) / 2 .
$$

With correction factor it will be

$$
2 \Delta \mathrm{BIC}^{*}=D-\log (2 \pi n)-\log \frac{n}{x(n-x)}-\log \frac{n}{y(n-y)}+\log \frac{2 n}{(x+y)(2 n-x-y)} .
$$

(d) Find the AIC for the two models

$$
2 \Delta \mathrm{AIC}=D+2
$$

(e) Compare the model determination procedures using the three criteria for large values of n.
If M_{2} holds, the deviance D will be approximately $\chi^{2}(1)$ and the BIC (as well as the Bayes factor) will favour M_{2}. Otherwise D will grow at a rate of n and BIC will favour M_{1}.
2. Consider regression data $(x, y)=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$ with x considered fixed and the responses Y_{i} being independent with

$$
Y_{i} \sim \mathcal{N}\left\{\mu_{k}\left(x_{i}\right), \phi\right\},
$$

where μ_{k} is determined by model M_{k} as

$$
M_{1}: \mu_{1}\left(x_{i}\right)=\alpha ; \quad M_{2}: \mu_{2}\left(x_{i}\right)=\beta x_{i} ; \quad M_{3}: \mu_{3}\left(x_{i}\right)=\gamma x_{i}^{2} .
$$

(a) For (improper) prior distributions $\pi_{i}(\eta, \phi) \propto \phi^{-1}$, where either $\eta=\alpha$, $\eta=\beta$, or $\eta=\gamma$, calculate expressions for the Bayes factor for comparing any pair of these models;
Write $\mu\left(x_{i}\right)=\theta_{j} z_{i j}$ where $z_{i j}$ is either $1, x_{i}$, or x_{i}^{2}. Next, partition the sum of squares as
$\sum\left(y_{i}-\theta_{j} z_{i j}\right)^{2}=\sum\left(y_{i}-\hat{\theta}_{j} z_{i j}\right)^{2}+\left(\hat{\theta}_{j}-\theta\right)^{2} \sum_{i} z_{i j}^{2}=s_{j}+n_{j}^{*}\left(\hat{\theta}_{j}-\theta\right)^{2}$.
where $\hat{\theta}_{j}=\left(\sum y_{i} z_{i j}\right) /\left(\sum z_{i j}^{2}\right)$ and $n_{j}^{*}=\sum_{i} z_{i j}^{2}$. This yields the posterior density as

$$
\pi_{j}\left(\theta_{j}, \phi\right) \propto \phi^{-(n+1) / 2} \exp \left\{-\frac{s_{j}}{2 \phi}-\frac{n_{j}^{*}\left(\theta_{j}-\hat{\theta}_{j}\right)^{2}}{2 \phi}\right\} .
$$

Integrating yields

$$
B_{j l} \propto \sqrt{\frac{n_{j}^{*} s_{j}^{n-1}}{n_{l}^{*} s_{l}^{n-1}}}
$$

and the Bayes factor favours the model with a small residual error, but corrects for the variation in the explanatory variable. The controversial issue is that it is generally not clear that different θ_{j} are meaningfully considered to be on the same scale.
(b) Find expressions for the BIC approximation to these models; Since the MLE for $\left(\theta_{j}, \phi\right)$ is $\left(\hat{\theta}_{j}, s_{j} / n\right)$ the maximizes log-likelihood is

$$
l\left(\hat{\theta}_{j}, s_{j} / n\right)=\frac{n}{2} \log s_{j}+\text { constant }
$$

so the BIC is equivalent to

$$
\mathrm{BIC}=\frac{n}{2} \log s_{j}+\log n
$$

Since the models all have the same number of parameters, the BIC simply favours the model with the smallest residual error.
(c) Find expressions for the AIC for these models;

$$
\mathrm{AIC}=\frac{n}{2} \log s_{j}+1
$$

same happens here
(d) Find expressions for Mallows' C_{p}. Mallows C_{p} is per definition

$$
C_{p}=s_{j}+2(1-n) \sigma^{2}
$$

and thus ranks the models by their residual sum of squares.
(e) Compare the model determination procedures.

Has been done more or less above. The only critical issue is the Bayesian correction using n_{j}^{*}. If we from the beginning normalize z such as to have $n_{j}^{*}=1$ for all j, this factor does not enter. If this is not done, the "uniform" prior on θ means different things in the three cases and this is very problematic. Also uniform distributions can have different scales. .

