1. Show that if $\Lambda \sim \Lambda\left(d, f_{1}, f_{2}\right)$ then

$$
\Lambda \stackrel{\mathcal{D}}{=} \prod_{i=1}^{d} B_{i}
$$

where B_{i} are independent and follow Beta distributions with

$$
\left.B_{i} \sim \mathcal{B}\left\{\left(f_{1}+1-i\right) / 2, f_{2} / 2\right)\right\}
$$

You may without proof use the fact that if $W \sim \mathcal{W}_{d}(f, \Sigma)$ and if $\Sigma_{12}=0$, then $W_{1 \mid 2}, W_{12} W_{22}^{-1} W_{21}$, and W_{22} are independent and Wishart distributed as
$W_{1 \mid 2} \sim \mathcal{W}_{r}\left(f-s, \Sigma_{11}\right), \quad W_{12} W_{22}^{-1} W_{21} \sim \mathcal{W}_{r}\left(s, \Sigma_{11}\right), \quad W_{22} \sim \mathcal{W}_{s}\left(f, \Sigma_{22}\right)$.
Hint: Use induction after d and exploit the identity

$$
\operatorname{det} A=\operatorname{det}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right) \operatorname{det}\left(A_{22}\right)
$$

For an arbitrary (invertible) square $d \times d$ matrix M write

$$
\operatorname{det} M=\prod_{i=1}^{d} \frac{\operatorname{det} M_{[i]}}{\operatorname{det} M_{[i-1]}},
$$

where $M_{[i]}$ contains the first i rows and columns of M so $M=M_{[d]}$ and $\operatorname{det} M_{[0]}=1$.
Represent Λ as

$$
\Lambda=\frac{\operatorname{det}\left(W_{1}\right)}{\operatorname{det}\left(W_{1}+W_{2}\right)}
$$

with $W_{j} \sim \mathcal{W}_{d}\left(f_{j}, I_{d}\right), j=1,2$ and independent. We now get

$$
\frac{\operatorname{det} W_{1[i]}}{\operatorname{det} W_{1[i-1]}}=\operatorname{det}\left(W_{1 i \mid 1 \ldots, i-1}\right)=W_{1 i \mid 1 \ldots, i-1}
$$

which is distributed as $\chi^{2}\left(f_{1}-i+1\right)$ and independent of $W_{1[i-1]}$ using the partitioning result for the Wishart distribution. It can also be seen by realizing that $W_{1 i \mid 1 \ldots, i-1}$ is the residual sum of squares from regressing X_{i} on X_{1}, \ldots, X_{i-1}. Similarly for $W_{1}+W_{2}$. Thus

$$
\Lambda=\frac{\operatorname{det}\left(W_{1}\right)}{\operatorname{det}\left(W_{1}+W_{2}\right)}=\frac{\prod_{i=1}^{d} W_{1 i \mid 1 \ldots, i-1}}{\prod_{i=1}^{d} W_{(1+2) i \mid 1 \ldots, i-1}}=\prod_{i=1}^{d} \frac{W_{1 i \mid 1 \ldots, i-1}}{W_{(1+2) i \mid 1 \ldots, i-1}}=\prod_{i} B_{i}
$$

2. Show that if $W \sim \mathcal{W}_{d}(f, \Sigma)$, and if $\Sigma_{12}=0$, then

$$
U=W_{12} W_{22}^{-1} W_{21} \sim \mathcal{W}_{r}\left(s, \Sigma_{11}\right)
$$

Further, U and W_{22} are independent.
Hint: Find first the conditional distribution of U given W_{22}, and use that for any positive (semi)definite matrix B there is a unique positive (semi)definite matrix A so $B=A^{2}$. The matrix $A=B^{-1 / 2}$ is the square root of B. Identify the (conditional) distribution of rows in $W_{22}^{-1 / 2} W_{21}$.
The conditional distribution of W_{12} given $W_{22}=w_{22}$ is

$$
W_{12} \mid W_{22}=w_{22} \sim \mathcal{N}_{s \times r}(0, \Lambda)
$$

with $\Lambda_{i j, k l}=\sigma_{i k} w_{j l}$.
Note that w gives the covariance between columns, whereas Σ yields that between rows. After post-multiplying with $W_{22}^{-1 / 2}$ we have

$$
W_{12} W_{22}^{-1 / 2} \mid W_{22}=w_{22} \sim \mathcal{N}_{r \times s}(0, \Lambda)
$$

with $\Lambda_{i j, k l}=\sigma_{i k} \delta_{j l}$, with $\delta_{j l}=1$ if $j=l$ and 0 otherwise. Thus rows in $W_{12} W_{22}^{-1 / 2}$ (or columns in $W_{22}^{-1 / 2} W_{21}$) are independent and identically distributed as $\mathcal{N}_{s}\left(0, \Sigma_{11}\right)$. Hence

$$
U=W_{12} W_{22}^{-1 / 2} W_{22}^{-1 / 2} W_{21}=W_{12} W_{22}^{-1} W_{21} \sim \mathcal{W}_{r}\left(s, \Sigma_{11}\right)
$$

3. Consider U and V independent and Beta distributed with

$$
U \sim \mathcal{B}(\gamma, \delta), \quad V \sim \mathcal{B}(\gamma+1 / 2, \delta)
$$

where the Beta distribution has density

$$
f(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, \quad 0<x<1
$$

Show that

$$
Z=\sqrt{U V} \sim \mathcal{B}(2 \gamma, 2 \delta)
$$

This may be more tricky than it seems. It should be possible to derive this by simple integration, but it appears to be easier using moments: The (fractional) moments of $\mathcal{B}(\alpha, \beta)$ are

$$
\mathbf{E} X^{\lambda}=\frac{\Gamma(\alpha+\lambda) \Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\alpha+\beta+\lambda)}
$$

which is obtained as the ratio of normalizing constants for $\mathcal{B}(\alpha+\lambda, \beta)$ and $\mathcal{B}(\alpha, \beta)$. We thus have

$$
\begin{aligned}
\mathbf{E}\left(\sqrt{U V}^{n}\right) & =\mathbf{E}\left(U^{n / 2}\right) \mathbf{E}\left(V^{n / 2}\right) \\
& =\frac{\Gamma(\gamma+n / 2) \Gamma(\gamma+\delta) \Gamma\{\gamma+(n+1) / 2\} \Gamma(\gamma+\delta+1 / 2)}{\Gamma(\gamma) \Gamma(\gamma+\delta+n / 2) \Gamma(\gamma+1 / 2) \Gamma\{\gamma+\delta+(n+1) / 2\}} .
\end{aligned}
$$

Use now Legendre's formula

$$
\Gamma(x) \Gamma(x+1 / 2)=\Gamma(2 x) \sqrt{\pi} 2^{2 x-1}
$$

to obtain

$$
\mathbf{E}\left(\sqrt{U V}^{n}\right)=\frac{\Gamma(2 \gamma+n) \Gamma(2 \gamma+2 \delta)}{\Gamma(2 \gamma) \Gamma(2 \gamma+2 \delta+n)}
$$

These are now recognized as the moments of $\mathcal{B}(2 \gamma, 2 \delta)$. As a distribution on $(0,1)$ is determined by its moments, the result follows.
4. Let $\Lambda \sim \Lambda\left(d, f_{1}, f_{2}\right)$. Show that
(a) If $d=1$:

$$
\frac{1-\Lambda}{\Lambda} \frac{f_{1}}{f_{2}} \sim F\left(f_{2}, f_{1}\right)
$$

$\Lambda\left(1, f_{1}, f_{2}\right)=\mathcal{B}\left(f_{1} / 2, f_{2} / 2\right)$. Hence this is the definition of F.
(b) If $d=2$:

$$
\frac{1-\sqrt{\Lambda}}{\sqrt{\Lambda}} \frac{f_{1}-1}{f_{2}} \sim F\left\{2 f_{2}, 2\left(f_{1}-1\right)\right\}
$$

Use the first question to deduce that

$$
\Lambda \stackrel{\mathcal{D}}{=} U V
$$

where $\left.V \sim \mathcal{B}\left\{f_{1} / 2, f_{2} / 2\right)\right\}$ and $\left.U \sim \mathcal{B}\left\{\left(f_{1}-1\right) / 2, f_{2} / 2\right)\right\}$ are independent. Use the third question to deduce that then

$$
\sqrt{\Lambda} \sim \mathcal{B}\left(f_{1}-1, f_{2}\right)
$$

The result now follows as above.
(c) If $f_{2}=1$:

$$
\frac{1-\Lambda}{\Lambda} \frac{f_{1}+1-d}{d} \sim F\left(d, f_{1}+1-d\right)
$$

Just use that $\Lambda\left(d, f_{1}, f_{2}\right)=\Lambda\left(f_{2}, f_{1}+f_{2}-d, d\right)$. The result now follows from (a).
(d) If $f_{2}=2$:

$$
\frac{1-\sqrt{\Lambda}}{\sqrt{\Lambda}} \frac{f_{1}+1-d}{d} \sim F\left\{2 d, 2\left(f_{1}+1-d\right)\right\}
$$

Just use that $\Lambda\left(d, f_{1}, f_{2}\right)=\Lambda\left(f_{2}, f_{1}+f_{2}-d, d\right)$. The result now follows from (b).

