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1. Let X = (X1, . . . , Xn) be a sample from the Gamma distribution with pa-
rameters α > 0 and β > 0 both unknown, i.e. the distribution with individual
densities

f(x;α, β) =
βαxα−1

Γ(α)
e−βx, x > 0.

The canonical minimal sufficient statistic is T = (S, C) = (
∑

i log Xi,
∑

i Xi).

(a) Find the marginal density of C;
The sum of Gamma variables with known shape parameter is itself
Gamma distributed so

f(c;α, β) =
βnαcnα−1

Γ(nα)
e−βc.

(b) Show that for fixed α, C is sufficient for β;
When α is fixed, the joint density of X1, . . . , Xn factorizes as

L(α, β) =
βnα∏

i x
α−1
i

Γ(α)n
e−βc(x) = h(α, x)g(c(x), α, β)

and Neyman’s criterion yields the result.
(c) Find the conditional likelihood function for α;

Dividing the joint density with the marginal yields

L(α |C = c) =
Γ(nα)
Γ(α)n

∏
i

(xi/c)α−1,

(also showing that (X1/C, . . .Xn/C) follows a Beta distribution).
(d) Find the profile likelihood function for α;

Maximizing the joint likelihood function over β yields β̂(α) = nα/c =
α/x̄ and hence

L̂(α) ∝ (α/x̄)nαΓ(α)−neα(s−n).

(e) Find the integrated likelihood for α when β is given a Gamma prior
distribution with density

π(β) ∝ ba

Γ(b)
βa−1e−bβ .

We get

L̄(α) =
∫

L(α, β)π(β) dβ

∝ esαΓ(α)−n
∫

βnαe−βc ba

Γ(b)
βa−1e−bβ

∝ esαΓ(α)−nΓ(a + nα)(b + c)−(nα+a).
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(f) Discuss inference for α when β is a nuisance parameter.
The conditional likelihood function eliminates the effect of the nuisance
parameter and would be safe to use.

2. Consider X1 ∼ N (0, 1) and define X2 as

X2 =

{
X1 if |X1| > c
−X1 otherwise.

Determine c so that X1 and X2 are uncorrelated.

We get

E(X1X2) = 2
∫ ∞

c
x2φ(x) dx− 2

∫ c

0
x2φ(x) dx.

Substituting u = x2 we get∫ ∞

c
x2φ(x) dx =

1√
2π

∫ ∞

c
x2e−x2/2 dx =

1
2
√

2π

∫ ∞

c2
ue−u/2 1√

u
du

=
23/2Γ(3/2)

2
√

2π
{1− F3(c)} =

1
2
{1− F3(c)}

where F3 is the distribution function of the χ2-distribution with three degrees
of freedom. Thus

E(X1X2) = 1− 2F3(c2)

and X1 and X2 are uncorrelated if

c =
√

F−1
3 (1/2) = 1.538172.

3. Let X ∼ Nd(0, σ2Id) where Id is the d × d identity matrix and let O be an
orthogonal d × d matrix, i.e. O>O = OO> = Id. Show that Y = OX ∼
Nd(0, σ2Id).

We have that if X ∼ Nd(ξ, Σ) then AX ∼ NAξ,AΣA>). Hence with the
above specification

OX ∼ Nd(O0, Oσ2IdO
>) = Nd(0, σ2OO>) = Nd(0, σ2Id).

4. Let X = (X1, X2, X3) be multivariate Gaussian N3(ξ,Σ) with

ξ =

 2
3
−1

 , Σ =

 4 1 4
1 2 2
4 2 5

 .

(a) Find the distribution of X1 + X2;
Since

(1, 1)

(
4 1
1 2

)(
1
1

)
= 8

we have
X1 + X2 ∼ N (2 + 3, 7) = N (5, 8).
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(b) Find the conditional distribution of X3 given X1 = 0;
We first marginalise to obtain the covariance matrix of (X1, X3) as

Σ13 =

 4 4

4 5

 .

Then
Σ3|1 = 5− 16/4 = 1,

so
X3 |X1 = 0 ∼ N{−1 +

1
4
4(0− 2), 1} = N (−3, 1).

(c) Find the concentration matrix K = Σ−1;
We have to invert the covariance matrix to get

K = Σ−1 =
1
3

 6 3 −6
3 4 −4

−6 −4 7

 .

(d) Find the conditional distribution of (X1, X2) given X3 = 1.
The concentration matrix is

K =
1
3

 6 3

3 4


so by inversion

Σ12|3 =
1
5

 4 −3

−3 6

 ,

which could also have been found directly from the covariance matrix.
The conditional expectation is easiest to calculate as

ξ12|3 =

(
2
3

)
+

1
5

(
4
2

)
{1− (−1)} =

1
5

(
18
19

)
.

(e) Find the conditional distribution of X1 + X2 given X3 = 1.
We can now proceed as in (a) to find

X1 + X2 |X3 = 1 ∼ N (37/5, 4/5).

Steffen L. Lauritzen, University of Oxford February 12, 2008
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