
BS2 Further Statistical Inference, HT 2009 Solution Sheet 2

1. Consider a sample (X1 . . . , Xn) = (x1, . . . , xn) of independent observations
from a canonical exponential family with density

f(x; θ) = b(x)eθ
>t(x)−c(θ).

The reciprocal score R(θ) is defined by

R(θ) = − ∂

∂θ
L(θ)−1

i.e. the derivative of the reciprocal of the likelihood function rather than its
logarithm.

(a) Show that

R(θ) = L(θ)−1{t(X)− τ(θ)} = L(θ)−1S(θ)

where τ(θ) = Eθ{t(X)}.
We get

L(θ)−1 = b(X)−1e−θ
>t(X)+c(θ).

Differentiating yields

R(θ) = −b(x)−1{−t(X) +
∂

∂θ
c(θ)}e−θ>t(X)+c(θ) = L(θ)−1S(θ) (1)

as required.

(b) Show that using Newton’s method on the reciprocal score equation
R(θ) = 0 leads to the iteration

θ ← θ + {v(θ) + S(θ)S(θ)>}−1S(θ).

Newton’s method applied to the reciprocal score equation has the form

θ ← θ −
{

∂

∂θ>
R(θ)

}−1

R(θ).

Differentiating further in (1) we get

−
{

∂

∂θ>
R(θ)

}
= L(θ)−1 ∂

∂θ>
τ(θ)− S(θ)

{
∂

∂θ>
L(θ)−1

}
= L(θ)−1v(θ) + S(θ)R(θ)> = L(θ)−1

{
v(θ) + S(θ)S(θ)>

}
and the result follows.
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(c) Compare this method to the method of scoring.
Using the identity for a non-singular square matrix A and column vec-
tors x, y

(A+ xy>)−1 = A−1 − A−1xy>A−1

1 + y>A−1x

we get

{v(θ) + S(θ)S(θ)>}−1 = v(θ)−1 − v(θ)−1S(θ)S(θ)>v(θ)−1

1 + S(θ)>v(θ)−1S(θ)

leading to

{v(θ) + S(θ)S(θ)>}−1S(θ) =
v(θ)−1S(θ)

1 + S(θ)>v(θ)−1S(θ)

making it easier (?) to see that this iteration takes smaller steps when
S(θ) is large, hence becomes more stable.

2. Let X = (X1, . . . , Xn) be a sample from the Weibull distribution with indi-
vidual densities

f(x; θ) = θxθ−1e−x
θ

for x > 0

where θ > 0 is unknown.

(a) Find the score statistic and the likelihood equation;
The score statistic is

S(θ) =
n

θ
+
∑

log xi −
∑

xθi log xi

and the likelihood equation can therefore be written.

θ =
n∑

xθi log xi −
∑

log xi
. (2)

(b) Show that if the likelihood equation has a solution, it must be the MLE;
The second derivative of the log-likelihood function is

S′(θ) = −j(θ) = − n
θ2
−
∑

xθi (log xi)2

and this is clearly negative, so a solution of the likelihood equation
must necessarily be the MLE.

(c) Describe the Newton–Raphson method for solving the likelihood equa-
tion;
The Newton–Raphson iterative step becomes

θ ← θ +
S(θ)
j(θ)

= θ +
nθ + θ2∑ log xi − θ2∑xθi log xi

n+ θ2
∑
xθi (log xi)2

.
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(d) Describe the method of scoring for solving the likelihood equation;
For the method of scoring we need to calculate the Fisher information
which involves the integral

E{Xθ(logX)2} =
∫ ∞
0

xθ(log x)2θxθ−1e−x
θ
dx.

Substituting u = xθ, du = θxθ−1 we get

E{Xθ(logX)2} = θ−2
∫ ∞
0

u(log u2)e−u du = θ−2(π2/6 + γ2 − γ)

where γ = −0.5772 . . . is Euler’s constant. This yields the Fisher infor-
mation

i(θ) =
n

θ2
(1 + π2/6 + γ2 − γ)

and hence the iterative step in the method of scoring becomes

θ ← θ +
S(θ)
i(θ)

= θ +
nθ + θ2∑ log xi − θ2∑xθi log xi

n(1 + π2/6 + γ2 − γ)
.

(e) Can you think of other methods for solving the likelihood equation?
It is tempting to use the equation (2) as a basis for an iteration

θ ← n∑
i x

θ
i log xi −

∑
log xi

but its convergence properties are not all that clear.

3. Consider a sample X = (X1, . . . , Xn) from a normal distribution N (µ, µ2),
where µ > 0 is unknown. This corresponds to the coefficient of variation√

V(X)/E(X) being known and equal to 1.

(a) Find the score function for µ;
We get by differentiation of

log f(xi;µ) = −1
2

log(2π)− logµ− x2
i

2µ2
+
xi
µ
− 1

2

and summing over i that

S(µ) = −n
µ

+
∑
iX

2
i

µ3
−
∑
iXi

µ2
.

If we let S =
∑
Xi and SS =

∑
X2
i this can be rewritten as

S(µ) = −n
µ

+
SS

µ3
− S

µ2
.
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(b) Show that the likelihood equation has a unique root µ̂ within the pa-
rameter space unless Xi are all equal to zero;
The likelihood equation is obtained by equating the score statistic to
0. Doing this and multiplying with µ3 yields the equation

nµ2 + µS − SS = 0

which has exactly one positive root

µ̂ =
−S +

√
S2 + 4nSS
2n

unless SS = 0, which implies all Xi are equal to zero.

(c) Show that the observed information at µ̂ is

j(µ̂) =
n

µ̂2
+
∑
iX

2
i

µ̂4
,

and use this to argue that the root µ̂ is indeed the MLE of µ;
We get by further differentiation that

j(µ) = − n

µ2
+

3SS
µ4
− 2S
µ3
.

Since µ̂ satisfies the likelihood equation we have

S

µ̂2
=
SS

µ̂3
− n

µ̂
.

Inserting this into the expression for j(µ̂) we get

j(µ̂) =
n

µ̂2
+
SS

µ̂4
> 0,

so the root of the likelihood equation is the unique local (and therefore
global) maximum.

(d) Show that the Fisher information is equal to (3n)/µ2.
We use that E(X2) = V(X) + {E(X)}2 = 2µ2 and take expectations
in the expression for j(µ) to get

i(µ) = E{j(µ)} = − n

µ2
+

6nµ2

µ4
− 2nµ

µ3
=

3n
µ2
.

4. Let X = (X1, . . . , Xn) be a sample from the Gamma distribution with pa-
rameters α > 0 and β > 0 both unknown, i.e. the distribution with individual
densities

f(x;α, β) =
βαxα−1

Γ(α)
e−βx, x > 0.
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(a) Show that the score statistic for θ = (α, β) is equal to

S(α, β) =

( ∑
i logXi + n log β − nψ(α)

nα/β −
∑
iXi

)
where ψ(α) = D log Γ(α) is the digamma function;
As this family is a canonical exponential family, the score statistic is
the difference of the canonical statistic t(X) = (

∑
i logXi,−

∑
iXi)>

and the derivative of the log-normalizing constant

c(α, β) = n log Γ(α)− nα log β,

which yields the result.
(b) Show that the method of scoring for θ leads to the iteration(

α
β

)
←
(
α
β

)
+

1
n{αψ′(α)− 1}

(
α β
β β2ψ′(α)

)
S(α, β),

where ψ′(α) is the trigamma function.
As this family is a canonical exponential family, the information matrix
is determined by double differentiation of the log-normalising constant
so we get

i(θ) = n

(
ψ′(α) −1/β
−1/β α/β2

)
.

Taking inverses we get

i(θ)−1 =
1

n{αψ′(α)− 1}

(
α β
β β2ψ′(α)

)
.

(c) Consider a simpler iteration for solving the likelihood equation by first
elimination β from the equation.
We first eliminate β from the equations by solving

nα/β =
∑
i

Xi

to get
β = α/X.

Inserting this into the equation∑
i

logXi + n log β − nψ(α) = 0

and dividing by n now yields

logX − log X̄ + logα− ψ(α) = 0.

If we apply Newton’s method to this equation, we get the iteration

α← α+
logX − log X̄ + logα− ψ(α)

ψ′(α)− 1/α
.

Steffen L. Lauritzen, University of Oxford February 2, 2009
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