1. Let X_{1}, \ldots, X_{n} be independent and identically normally distributed as $\mathcal{N}\left(\mu, \mu^{2}\right)$ with $\mu>0$ being unknown. Thus the observations have constant coefficient of variation $\sqrt{\mathbf{V}(X) / \mathbf{E}(X)}$.
(a) Show that $T=(U, V)=\left(\sum_{i} X_{i} / n, \sum_{i} X_{i}^{2} / n\right)$ is minimal sufficient;

The likelihood function is

$$
\begin{aligned}
l(\mu) & =\log L(\mu)=c_{1}-n \log \mu-\left(\sum_{i} x_{i}^{2}-2 \sum_{i} x_{i} \mu+n \mu^{2}\right) /\left(2 \mu^{2}\right) \\
& =c_{2}-n \log \mu-n v /\left(2 \mu^{2}\right)+n u / \mu
\end{aligned}
$$

where c_{1} and c_{2} are constants. Three values of the likelihood function thus determines linear equations for c, u and v so (u, v) can be determined from the likelihood function:

$$
\begin{aligned}
-2 l(1) / n & =c+v-2 u \\
-2 l(2) / n & =c+2 \log 2+v / 4-u \\
-2 l(3) / n & =c+2 \log 3+v / 9-2 u / 3
\end{aligned}
$$

Hence (u, v) is equivalent to the likelihood function.
(b) Show that $A=U / \sqrt{V}$ is ancillary;

Clearly $Y=X / \mu$ is distributed as $\mathcal{N}(1,1)$, independently of μ. But

$$
A=U / \sqrt{V}=Z / \sqrt{W}
$$

where $(Z, W)=\left(\sum_{i} Y_{i} / n, \sum_{i} Y_{i}^{2} / n\right)$, hence its distribution cannot depend on μ.
(c) Show that (U, V) is not complete;

Let $\alpha=\mathbf{E}_{\mu}(A)$ which is independent of μ because of the above. Then, for $h(U, V)=U / \sqrt{V}-\alpha$ we have

$$
\mathbf{E}_{\mu}\{h(U, V)\}=0 \text { for all values of } \mu .
$$

Hence (U, V) is not complete.
(d) Discuss inference about μ.

Inference about μ should then be based on the conditional distribution of U given A.
2. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a sample of size n from the uniform distribution on the interval $(\psi-\lambda, \psi+\lambda)$:

$$
f(x ; \theta)=\frac{1}{2 \lambda} \text { for } \psi-\lambda<x<\psi+\lambda \text { and } 0 \text { otherwise }
$$

where $\theta=(\psi, \lambda)$ with $-\infty<\psi<\infty$ and $\lambda>0$ both unknown.
(a) Show that $\left(X^{(1)}, X^{(n)}\right)$ is minimal sufficient;

The likelihood function is

$$
L(\psi, \lambda)=\left\{\begin{array}{cc}
(2 \lambda)^{-n} & \text { if } \psi-\lambda>x_{(1)} \text { and } \psi+\lambda<x_{(n)} \\
0 & \text { otherwise }
\end{array}\right.
$$

so $\left(X^{(1)}, X^{(n)}\right)$ is clearly sufficient. But since $\left(X^{(1)}, X^{(n)}\right)$ also can be inferred from the likelihood function it is also minimal sufficient.
(b) Show that the maximum likelihood estimator of θ is

$$
\hat{\psi}=\left(X_{(1)}+X_{(n)}\right) / 2 ;, \quad \hat{\lambda}=\left(X_{(n)}-X_{(1)}\right) / 2
$$

The likelihood function is maximized when λ is minimized, subject to the constraint that the interval $(\psi-\lambda, \psi+\lambda)$ must contain $X_{(1)}$ and $X_{(n)}$. This minimum is attained when

$$
\hat{\psi}=\left(X_{(1)}+X_{(n)}\right) / 2, \quad \hat{\lambda}=\left(X_{(n)}-X_{(1)}\right) / 2 .
$$

(c) Show that the distribution of $C=\left(X_{(n)}-X_{(1)}\right) / 2$ does not depend on ψ;

Let $Y=X-\psi$. The distribution of Y does not depend on ψ. Since

$$
C=\hat{\lambda}=\left(X_{(n)}-X_{(1)}\right) / 2=\left(Y_{(n)}-Y_{(1)}\right) / 2
$$

the distribution of C cannot depend on ψ.
(d) Let $(U, V)=\left(\left(X_{(1)}-\psi\right) / \lambda,\left(X_{(n)}-\psi\right) / \lambda\right)$ and show that the joint density of (U, V) is

$$
f(u, v)=\left\{\begin{array}{cc}
n(n-1)(v-u)^{n-2} / 2^{n} & \text { if }-1<u<v<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Hint: Find first $P(U \leq u, V \leq v)$.
Since $(X-\psi) / \lambda$ is uniformly distributed on the interval $-1<x<1$, we get for $-1<u<v<1$ that

$$
P(U>u, V \leq v)=\frac{(v-u)^{n}}{2^{n}}
$$

and differentiation w.r.t. u and v yields the density required.
(e) Find the conditional density of $\hat{\psi}=\left(X_{(1)}+X_{(n)}\right) / 2$, given $C=c$.

Let $B=(U+V) / 2$ and $A=(V-U) / 2$. This linear transformation has determinant $1 / 2$ so the joint density of (a, b) is

$$
f(a, b)=\left\{\begin{array}{cc}
2 n(n-1) a^{n-2} & \text { if }-1<b-a<b+a<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

The conditional density of B given $A=a$ is then found by keeping a constant so

$$
f(b \mid a) \propto\left\{\begin{array}{cc}
1 & \text { if }-1<b-a<b+a<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Now $C=\lambda A$ and $\hat{\psi}=\lambda B+\psi$ so $\hat{\psi}$ is uniformly distributed as:

$$
f(\hat{\psi} \mid c) \propto\left\{\begin{array}{cc}
1 & \text { if }-\lambda+c+\psi<\hat{\psi}<\psi+\lambda-c \\
0 & \text { otherwise }
\end{array}\right.
$$

(f) Discuss conditional inference for ψ when $\lambda=1$ is known.

When λ is known, C is ancillary, so inference about ψ should be made in the conditional distribution of $\hat{\psi}$ given $C=c$ as derived above. If c is very close to one, this distribution is very narrow, as then $\hat{\psi}-\psi$ is conditionally uniform on $(c-1,1-c)$, which is then a very small interval, and $\hat{\psi}$ is a very precise estimate. If on the other hand c is close to zero, the estimate $\hat{\psi}$ is very inaccurate and the corresponding confidence interval imprecise.
When λ is unknown, it still makes sense to condition on C, but now the conditional distribution of $\hat{\psi}$ given $C=c$ still depends on λ, so C does not form a cut.
3. Consider X and Y as independent Poisson random variables with $\mathbf{E}(X)=\gamma$ and $\mathbf{E}(Y)=\delta$, where $\gamma, \delta>0$ are both unknown. We wish to find a similar test for equality of the two Poisson rates, i.e. the hypothesis $H_{0}: \gamma=\delta$.
(a) Show that under the null hypothesis, $C=X+Y$ is sufficient and complete;
The joint probability mass function is

$$
p(x, y ; \gamma, \delta)=\frac{\gamma^{x} \delta^{y}}{x!y!} e^{-\gamma-\delta}=\frac{1}{x!y!} e^{x \log \gamma+y \log \delta-\gamma-\delta}
$$

If $\gamma=\delta$ this is a one-parameter linear exponential family with $X+Y$ as the canonical sufficient statistic and $\theta=\log \gamma=\log \delta$ as canonical parameter. Thus $C=X+Y$ is sufficient and complete under the hypothesis.
(b) Find the conditional distribution of X given $C=c$;

Under the hypothesis, $C=X+Y$ is Poisson with mean $\gamma+\delta=2 \gamma=2 \delta$. Thus for $x+y=c$

$$
p(x \mid C=c ; \gamma)=\frac{p(x, y ; \gamma)}{p(c ; \gamma)}=\frac{c!}{x!c-x!} \frac{1}{2^{c}}=\binom{c}{x} \frac{1}{2^{c}}
$$

i.e. the conditional distribution is binomial.
(c) Describe a similar test for the hypothesis H_{0}.

A similar test for H_{0} is now consctructed by rejecting for $X>l(c)$ or $X<-l(c)$ where $l(c)$ is the upper $1-\alpha$ quantile in the binomial distribution for c trials with parameter $1 / 2$.

