1. Consider samples x and y and let M_{1} denote the model considering X and Y independent with binomial distributions

$$
P(X=x)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}, \quad P(Y=y)=\binom{n}{y} \eta^{y}(1-\eta)^{n-y}
$$

where $0 \leq \theta, \eta \leq 1$ are both unknown.
Let similarly M_{2} denote the model where $\theta=\eta$ and everything else is as for M_{1}.
(a) Calculate the maximized \log-likelihood ratio statistic $-2 \log \Lambda$ for comparing the two models;
(b) For uniform prior distributions on θ, η, calculate the Bayes factor for comparing M_{1} to M_{2};
(c) Find the BIC approximation to the Bayes factor, with or without including all terms, and comment on its accuracy;
(d) Find the AIC for the two models
(e) Compare the model determination procedures using the three criteria for large values of n.
2. Consider regression data $(x, y)=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$ with x considered fixed and the responses Y_{i} being independent with

$$
Y_{i} \sim \mathcal{N}\left\{\mu_{k}\left(x_{i}\right), \phi\right\}
$$

where μ_{k} is determined by model M_{k} as

$$
M_{1}: \mu_{1}\left(x_{i}\right)=\alpha ; \quad M_{2}: \mu_{2}\left(x_{i}\right)=\beta x_{i} ; \quad M_{3}: \mu_{3}\left(x_{i}\right)=\gamma x_{i}^{2}
$$

(a) For (improper) prior distributions $\pi_{i}(\eta, \phi) \propto \phi^{-1}$, where either $\eta=\alpha$, $\eta=\beta$, or $\eta=\gamma$, calculate expressions for the Bayes factor for comparing any pair of these models;
(b) Find expressions for the BIC approximation to these models;
(c) Find expressions for the AIC for these models;
(d) Find expressions for Mallows' C_{p}.
(e) Compare the model determination procedures.

