Some of these may be a bit too difficult ... The last question is easiest, but it uses results from the previous questions.

1. Show that if $\Lambda \sim \Lambda\left(d, f_{1}, f_{2}\right)$ then

$$
\Lambda \stackrel{\mathcal{D}}{=} \prod_{i=1}^{d} B_{i}
$$

where B_{i} are independent and follow Beta distributions with

$$
\left.B_{i} \sim \mathcal{B}\left\{\left(f_{1}+1-i\right) / 2, f_{2} / 2\right)\right\}
$$

You may without proof use the fact that if $W \sim \mathcal{W}_{d}(f, \Sigma)$ and if $\Sigma_{12}=0$, then $W_{1 \mid 2}, W_{12} W_{22}^{-1} W_{21}$, and W_{22} are independent and Wishart distributed as

$$
W_{1 \mid 2} \sim \mathcal{W}_{r}\left(f-s, \Sigma_{11}\right), \quad W_{12} W_{22}^{-1} W_{21} \sim \mathcal{W}_{r}\left(s, \Sigma_{11}\right), \quad W_{22} \sim \mathcal{W}_{s}\left(f, \Sigma_{22}\right)
$$

Hint: Use induction after d and exploit the identity

$$
\operatorname{det} A=\operatorname{det}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right) \operatorname{det}\left(A_{22}\right)
$$

2. Show that if $W \sim \mathcal{W}_{d}(f, \Sigma)$, and if $\Sigma_{12}=0$, then

$$
U=W_{12} W_{22}^{-1} W_{21} \sim \mathcal{W}_{r}\left(s, \Sigma_{11}\right)
$$

Further, U and W_{22} are independent.
Hint: Find first the conditional distribution of U given W_{22}, and use that for any positive (semi)definite matrix B there is a unique positive (semi)definite matrix A so $B=A^{2}$. The matrix $A=B^{-1 / 2}$ is the square root of B. Identify the (conditional) distribution of rows in $W_{12} W_{22}^{-1 / 2}$.
3. Consider U and V independent and Beta distributed with

$$
U \sim \mathcal{B}(\gamma, \delta), \quad V \sim \mathcal{B}(\gamma+1 / 2, \delta)
$$

where the Beta distribution has density

$$
f(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, \quad 0<x<1
$$

Show that

$$
Z=\sqrt{U V} \sim \mathcal{B}(2 \gamma, 2 \delta)
$$

4. Let $\Lambda \sim \Lambda\left(d, f_{1}, f_{2}\right)$. Show that
(a) If $d=1$:

$$
\frac{1-\Lambda}{\Lambda} \frac{f_{1}}{f_{2}} \sim F\left(f_{2}, f_{1}\right) ;
$$

(b) If $d=2$:

$$
\frac{1-\sqrt{\Lambda}}{\sqrt{\Lambda}} \frac{f_{1}-1}{f_{2}} \sim F\left\{2 f_{2}, 2\left(f_{1}-1\right)\right\}
$$

(c) If $f_{2}=1$:

$$
\frac{1-\Lambda}{\Lambda} \frac{f_{1}+1-d}{d} \sim F\left(d, f_{1}+1-d\right)
$$

(d) If $f_{2}=2$:

$$
\frac{1-\sqrt{\Lambda}}{\sqrt{\Lambda}} \frac{f_{1}+1-d}{d} \sim F\left\{2 d, 2\left(f_{1}+1-d\right)\right\} .
$$

