1. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a sample from the Gamma distribution with parameters $\alpha>0$ and $\beta>0$ both unknown, i.e. the distribution with individual densities

$$
f(x ; \alpha, \beta)=\frac{\beta^{\alpha} x^{\alpha-1}}{\Gamma(\alpha)} e^{-\beta x}, \quad x>0 .
$$

The canonical minimal sufficient statistic is $\left.T=(S, C)=\sum_{i} \log X_{i}, \sum_{i} X_{i}\right)$.
(a) Find the marginal density of C;
(b) Show that for fixed α, C is sufficient for β;
(c) Find the conditional likelihood function for α;
(d) Find the profile likelihood function for α;
(e) Find the integrated likelihood for α when β is given a Gamma prior distribution with density

$$
\pi(\beta) \propto \frac{b^{a}}{\Gamma(b)} \beta^{a-1} e^{-b \beta}
$$

(f) Discuss inference for α when β is a nuisance parameter.
2. Consider $X_{1} \sim \mathcal{N}(0,1)$ and define X_{2} as

$$
X_{2}=\left\{\begin{aligned}
X_{1} & \text { if }\left|X_{1}\right|>c \\
-X_{1} & \text { otherwise }
\end{aligned}\right.
$$

(a) Show that $X_{2} \sim \mathcal{N}(0,1)$;
(b) Determine c so that X_{1} and X_{2} are uncorrelated.
3. Let $X \sim \mathcal{N}_{d}\left(0, \sigma^{2} I_{d}\right)$ where I_{d} is the $d \times d$ identity matrix and let O be an orthogonal $d \times d$ matrix, i.e. $O^{\top} O=O O^{\top}=I_{d}$. Show that $Y=O X \sim$ $\mathcal{N}_{d}\left(0, \sigma^{2} I_{d}\right)$.
4. Verify the matrix identities

$$
\begin{equation*}
K_{11}^{-1}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{11}^{-1} K_{12}=-\Sigma_{12} \Sigma_{22}^{-1}, \tag{2}
\end{equation*}
$$

where $K=\Sigma^{-1}$ is partitoned into blocks as

$$
K=\left(\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right), \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right) .
$$

5. Let $X=\left(X_{1}, X_{2}, X_{3}\right)$ be multivariate Gaussian $\mathcal{N}_{3}(\xi, \Sigma)$ with

$$
\xi=\left(\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right), \quad \Sigma=\left(\begin{array}{lll}
4 & 1 & 4 \\
1 & 2 & 2 \\
4 & 2 & 5
\end{array}\right)
$$

(a) Find the distribution of $X_{1}+X_{2}$;
(b) Find the conditional distribution of X_{3} given $X_{1}=0$;
(c) Find the concentration matrix $K=\Sigma^{-1}$;
(d) Find the conditional distribution of $\left(X_{1}, X_{2}\right)$ given $X_{3}=1$
(e) Find the conditional distribution of $X_{1}+X_{2}$ given $X_{3}=1$.

