1. Consider a sample $\left(X_{1} \ldots, X_{n}\right)=\left(x_{1}, \ldots, x_{n}\right)$ of independent observations from a canonical exponential family with density

$$
f(x ; \theta)=b(x) e^{\theta^{\top} t(x)-c(\theta)}
$$

The reciprocal score $R(\theta)$ is defined by

$$
\mathcal{R}(\theta)=-\frac{\partial}{\partial \theta} L(\theta)^{-1}
$$

i.e. the derivative of the reciprocal of the likelihood function rather than its logarithm.
(a) Show that

$$
R(\theta)=L(\theta)^{-1}\{t(X)-\tau(\theta)\}=L(\theta)^{-1} S(\theta)
$$

where $\tau(\theta)=\mathbf{E}_{\theta}\{t(X)\}$.
(b) Show that using Newton's method on the reciprocal score equation $R(\theta)=0$ leads to the iteration

$$
\theta \leftarrow \theta+\left\{v(\theta)+S(\theta) S(\theta)^{\top}\right\}^{-1} S(\theta)
$$

(c) Compare this method to the method of scoring.
2. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a sample from the Weibull distribution with individual densities

$$
f(x ; \theta)=\theta x^{\theta-1} e^{-x^{\theta}} \text { for } x>0
$$

where $\theta>0$ is unknown.
(a) Find the score statistic and the likelihood equation;
(b) Show that if the likelihood equation has a solution, it must be the MLE;
(c) Describe the Newton-Raphson method for solving the likelihood equation;
(d) Describe the method of scoring for solving the likelihood equation;
(e) Can you think of other methods for solving the likelihood equation?
3. Consider a sample $X=\left(X_{1}, \ldots, X_{n}\right)$ from a normal distribution $\mathcal{N}\left(\mu, \mu^{2}\right)$, where $\mu>0$ is unknown. This corresponds to the coefficient of variation $\sqrt{\mathbf{V}(X)} / \mathbf{E}(X)$ being known and equal to 1.
(a) Find the score function for μ;
(b) Show that the likelihood equation has a unique root $\hat{\mu}$ within the parameter space unless X_{i} are all equal to zero;
(c) Show that the observed information at $\hat{\mu}$ is

$$
j(\hat{\mu})=\frac{n}{\hat{\mu}^{2}}+\frac{\sum_{i} X_{i}^{2}}{\hat{\mu}^{4}}
$$

and use this to argue that the root $\hat{\mu}$ is indeed the MLE of μ;
(d) Show that the Fisher information is equal to $(3 n) / \mu^{2}$.
4. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a sample from the Gamma distribution with parameters $\alpha>0$ and $\beta>0$ both unknown, i.e. the distribution with individual densities

$$
f(x ; \alpha, \beta)=\frac{\beta^{\alpha} x^{\alpha-1}}{\Gamma(\alpha)} e^{-\beta x}, \quad x>0
$$

(a) Show that the score statistic for $\theta=(\alpha, \beta)$ is equal to

$$
S(\alpha, \beta)=\binom{\sum_{i} \log X_{i}+n \log \beta-n \psi(\alpha)}{n \alpha / \beta-\sum_{i} X_{i}}
$$

where $\psi(\alpha)=D \log \Gamma(\alpha)$ is the digamma function;
(b) Show that the method of scoring for θ leads to the iteration

$$
\binom{\alpha}{\beta} \leftarrow\binom{\alpha}{\beta}+\frac{1}{n\left\{\alpha \psi^{\prime}(\alpha)-1\right\}}\left(\begin{array}{cc}
\alpha & \beta \\
\beta & \beta^{2} \psi^{\prime}(\alpha)
\end{array}\right) S(\alpha, \beta)
$$

where $\psi^{\prime}(\alpha)$ is the trigamma function.
(c) Consider a simpler iteration for solving the likelihood equation by first eliminating β from the equation.

