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Newton—-Raphson method The likelihood equation
Iterative step

Properties

Under suitable regularity conditions, the maximum likelihood
estimator is a solution to the score equation

0 0

s(0) = s(x:0) = 551(0) = 55

log L(#; x) =0,
where 5(6) = s(X; 0) is the score statistic.

Generally the solution to this equation must be calculated by
iterative methods.

One of the most common methods is the Newton—Raphson
method and this is based on successive approximations to the
solution, using Taylor's theorem to approximate the equation.
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Newton—-Raphson method The likelihood equation
Iterative step

Properties

Thus, we take an initial value 6y and write
0 = 5(6o) — J(60)(6 — o),
ignoring the remainder term. Here

2
J(0) = J(0; X) = —8895(9) - —8802/(9).

Solving this equation for 6 then yields a new value 6
01 = 0o + J(00) 1 S(6p)
and we keep repeating this procedure as long as [S(6;)| > e, i.e.

Ors1 = Ok + J(0)71S(0o).
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Newton—-Raphson method The likelihood equation
Iterative step

Properties

Clearly, § is a fixed point of this iteration as S(A) = 0 and,
conversely, any fixpoint is a solution to the likelihood equation.

If § is a local maximum for the likelihood function, we must have

62

1(d) > 0.

The quantity J(GA) determines the sharpness of the peak in the
likelihood function around its maximum. It is also known as the
observed information.

Occasionally we also use this term for J(6) where 6 is arbitrary but
strictly speaking this can be quite inadequate as J(#) may well be
negative (although positive in expectation).
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Newton—-Raphson method The likelihood equation
Iterative step

Properties

Recall that the (expected) Fisher information is

1(0) = E{J(0)}

and that for large i.i.d. samples it holds approximately that
6 ~ N(6,1(0)71). In contrast to the observed information, /(#) is
non-negative everywhere, and in regular cases even strictly positive.

But it is also approximately true, to be elaborated later, under the
same assumptions that

\/J(0)(O —6) ~ N(0,1),

so we could write § ~ N/(6, J(6)71).
In fact, the observed information is in many ways preferable to the

expected information. Indeed, 0 is approximately sufficient and
J(0) is approximately ancillary.
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Newton—-Raphson method The likelihood equation
Iterative step

Properties

Formally the iteration becomes
» Choose an initial value 0; calculate S(#) and J(0);
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Newton—-Raphson method The likelihood equation
Iterative step

Properties

Formally the iteration becomes
» Choose an initial value 0; calculate S(#) and J(0);
» while |S(6)| > € repeat
1. 6 — 0+ J(O)715(0)
2. Calculate 5() and J(0) go to 1

Steffen Lauritzen, University of Oxford Newton—Raphson Iteration and the Method of Scoring



Newton—-Raphson method The likelihood equation
Iterative step

Properties

Formally the iteration becomes
» Choose an initial value 0; calculate S(#) and J(0);
» while |S(6)| > € repeat
1. 6 — 0+ J(O)715(0)
2. Calculate 5() and J(0) go to 1

» return 0;
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Newton—-Raphson method The likelihood equation
Iterative step

Properties

Formally the iteration becomes
» Choose an initial value 6; calculate S(#) and J(0);
» while |S(6)| > € repeat
10— 0+ J0)71S(0)
2. Calculate 5() and J(0) go to 1
» return 0;

Other criteria for terminating the iteration can be used. To get a
criterion which is insensitive to scaling of the variables, one can
instead use the criterion J(0)71S(0)? > e.
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Newton—-Raphson method The likelihood equation
Iterative step

Properties

Formally the iteration becomes

» Choose an initial value 6; calculate S(#) and J(0);
> while |S(f)| > € repeat

1. 60— 6+ J()"15(9)

2. Calculate 5() and J(0) go to 1
» return 0;

Other criteria for terminating the iteration can be used. To get a
criterion which is insensitive to scaling of the variables, one can
instead use the criterion J(0)71S(0)? > e.

Note that, as a by-product of this algorithm, the final value of J(0)
is the observed information which can be used to assess the
uncertainty of 6.
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Newton—-Raphson method The likelihood equation
Iterative step

Properties

If 6y is chosen sufficiently near 0 convergence is very fast.

It can be computationally expensive to evaluate J(6) a large
number of times. This is sometimes remedied by only changing J
every 10 iterations or similar.

Another problem with the Newton—Raphson method is its lack of
stability. When the initial value 6g is far from @ it might wildly
oscillate and not converge at all. This is sometimes remedied by
making smaller steps as

0 04 ~J(0)71S(0)

where 0 < v < 1 is a constant. An alternative (or additional)
method of stabilization is to let

0 — 6+ ~{J(0) + S(0)°}15(6)

as this avoids taking large steps when S(0) is large.
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The method of scoring

The iteration has a tendency to be unstable for many reasons, one
of them being that J() may be negative unless @ already is very
close to the MLE . In addition, J(#) might sometimes be hard to
calculate.

R. A. Fisher introduced the method of scoring which simply
replaces the observed second derivative with its expectation to
yield the iteration

0« 0+ 1(0)"*S(0).

In many cases, /(0) is easier to calculate and /() is always
positive. This generally stabilizes the algorithm, but here it can
also be necessary to iterate as

6 — 0 +~{1(0) + S(0)>}715(6).
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The method of scoring

In the case of n independent and identically distributed
observations we have /(0) = nl(0) so

0« 0+ h(0)"1S(0)/n

where /1(0) is the Fisher information in a single observation.

In a linear canonical one-parameter exponential family
f(x;0) = b(x)eet(x)fc(e)
we get
82
9(0) = = {c(0) — 0t(X)} = <"(0) = 1(0).

so for canonical exponential families the method of scoring and the
method of Newton—Raphson coincide.
If we let v(0) = ¢”(6) = 1(8) = V(t(X)) the iteration becomes

0 — 604 v(0)71S(0)/n.
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The method of scoring

The identity of Newton—Raphson and the method of scoring only
holds for the canonical parameter. If 6 = g(u)

) = jﬂz[c{g(u)} ~ g(u)t(X)]
- jﬂ €' () {g ()} — &' ()t(X)]
= vig(W)Heg' (W)} +&" (1) [r{g(1)} — t(X)]

where we have let 7(0) = ¢/(8) = Eo{t(X)} and

v(0) = c"(0) = Vo{t(X)}.

The method of scoring is simpler because the last term has
expectation equal to O:

I(p) = E{J(n)} = v{g(u) e (1)}>.
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Newton—Raphson

. Scoring
The multi-parameter case =

The considerations on the previous overheads readily generalize to
the multi-parameter case. The approximation to the score equation
becomes

0 = 5(6) — J(00)(6 — bo)
where

0 H?
5(9), = 90 /(9)3 J(‘g)rs = —WI(G),

i.e. 5(0) is the gradient and —J(0) the Hessian of 1(0).
The iterative step can still be written as

0 — 0+ J()1S(0)

where we just have to remember that the score statistic S is a
vector and the Hessian —J a matrix.

Steffen Lauritzen, University of Oxford Newton—Raphson Iteration and the Method of Scoring



Newton—Raphson
Scoring

The multi-parameter case

The lack of stability of the Newton—Raphson algorithm is not
getting better in the multiparameter case. On the contrary there
are not only problems with negativity, but the matrix can be
singular and not invertible or it can have both positive and
negative eigenvalues.

Recall that a symmetric matrix A is positive definite if all its
eigenvalues are positive or, equivalently, if x " Ax > 0 for all x # 0.
Sylvester's theorem says that A is positive definite if and only if
det(Ar) > O for all submatrices Ag of the form {ars},s—1. Rr.
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Newton—Raphson
Scoring

The multi-parameter case

It is therefore also here advisable to replace J(6) with its
expectation, the Fisher information matrix, i.e. iterate as

00+ 1(0)715(0)

where now /(#) is the Fisher information matrix which is always
positive definite if the model is not over-parametrized.

Also in the multi-parameter case it can be advisable to stabilize
additionally, i.e. by iterating as

0 — 6+~{1(0) +S(0)S(0)"}715(6)

or

6 —0+~{1(6) + S(6)" S(O)E}S(9),

where E is the identity matrix.
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Newton—Raphson
Scoring

The multi-parameter case

In a multi-parameter curved exponential family with densities
F(x:5) = b(x)e D =<l
where (3 is d-dimensional, we get

0° -
HO) = g [AOO) 00T H(X)]

- () - (5) oo

= S OO - X )]+<§§) 00 (75):

where the first term has expectation zero so

1(9) = E{J(60)} = <§Z>T o (5
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Newton—Raphson
Scoring

The multi-parameter case

In the multi-parameter case it is in wide generality approximately
true that
0~ Ny(6,1(6))

or with a slight imprecision
é ~ Nd(ea J(é)_l)

where Ny is the d-dimensional Gaussian distribution, to be
described later.

In particular it holds approximately that
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