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Pseudo likelihoods

Suppose that there is a minimal sufficient statistic T = t(X )
partitioned as T = (S ,C ) = (s(X ), c(X )) where:

C1: the distribution of C depends on λ but not on ψ;

C2: the conditional distribution of S given C = c depends on ψ
but not λ, for all c;

C3: the parameters vary independently, i.e. Θ = Ψ× Λ.

Then the likelihood function factorizes as

L(θ | x) ∝ f (s, c ; θ) = f (s | c;ψ)f (c ;λ)

and we say that C is ancillary for ψ, S is conditionally sufficient for
ψ given C , and C is marginally sufficient for λ.

We also say that C is a cut for λ and would then

I base inference about λ on the marginal distribution of C ;

I base inference about ψ on the conditional distribution of S
given C = c .
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Consider a sample X = (X1, . . . ,Xn) from a normal distribution
N (µ, σ2) where both µ and σ2 are unknown. Recall that
(U,V ) = (X̄ ,S2 =

∑
i (Xi − X̄i )

2) is minimal sufficient and the
likelihood function is

L(µ, σ2 | x) ∝ f (u;µ, σ2)f (v ;σ2).

If we do straight maximum likelihood estimation, we have

µ̂ = U = X̄ , σ̂2 = V /n.

However, most statisticians agree that it is sensible to use
σ̃2 = V /(n − 1) as the estimator of σ2. Is this reasonable and is
there a general rationale for this?

Note that the common unbiasedness argument does not work as σ̃
is not unbiased for the standard deviation σ, or σ̃−1 is not
unbiased for the precision σ−2.
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This example shows that we have to be very careful when nuisance
parameters are present and straight likelihood considerations can
lead us astray:

We wish to establish the precision of a new instrument which
measures with normal errors. We are therefore taking repeated
measurements of individuals (Xi1,Xi2), i = 1, . . . , n which are all
independent with

Xij ∼ N (µi , σ
2).

Now consider

Ui = (Xi1 + Xi2)/2, Vi = (Xi1 − Xi2)/2.

These are again independent and normally distributed as

Ui ∼ N (µi , τ
2), Vi ∼ N (0, τ2),

where τ2 = σ2/2.
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Clearly, we might as well consider (Ui ,Vi ) as the original data.
Also, the pair (U,W ) is minimal sufficient, where
U = (U1, . . . ,Un) and W =

∑
i V 2

i , hence the likelihood function
becomes

L(µ, τ2) ∝ (τ2)−n/2e−
1

2τ2

∑
i (ui−µi )

2

(τ2)−n/2e−
1

2τ2

∑
i v

2
i

= e−
1

2τ2

∑
i (ui−µi )

2

(τ2)−ne−
w

2τ2 .

Thus the maximum likelihood estimator is

µ̂i = Ui , i = 1, . . . , n; τ̂2 = W /2n.

But W ∼ τ2χ2(n), so for large n, τ̂2 ≈ nτ2/(2n) = τ2/2!! So the
additional parameters µi are a serious nuisance if τ2 is the
parameter of interest.
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Pseudo likelihoods

Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

The previous example shows that straight likelihood considerations
may not lead to meaningful results when only a part of the
parameter is considered.

There are a number of suggestions for modifying the likelihood
function to extract the evidence in the sample concerning a
parameter of interest ψ when θ = (ψ, λ). Such modifications are
generally known as pseudo-likelihood functions.

Examples include: conditional likelihood, marginal likelihood,
profile likelihood, integrated likelihood, and others, for example
local, partial, restricted, residual, penalized, etc. The many names
bear witness that straight likelihood considerations may not always
be satisfactory.
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

Suppose we can write the joint density of a sufficient statistic
T = (U,V ) as

f (u;λ, ψ)f (v | u;ψ),

where ψ is the parameter of interest. Then, for fixed ψ, U is
sufficient for λ. Inference for ψ can now be based on the
conditional likelihood function

L(ψ; v | u) = f (v | u;ψ),

as the conditional distribution does not involve λ.

The critical issue is whether (useful) information about ψ is lost by
ignoring the factor f (u;λ, ψ).
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

In the normal example with many nuisance parameters,
U = (Ui , i = 1, . . . , n) is sufficient for the nuisance parameter
λ = (µi , i = 1, . . . , n) for fixed ψ = τ2. Conditioning on U yields

L(τ2; w | u) = f (w | u; τ2) = f (w ; τ2) = (τ2)−n/2e−
w

2τ2 .

This gives the conditional MLE τ̂2
|u = W /n which is more sensible.

It may be argued that Ui ∼ N (µi , τ
2) cannot possibly have

information about τ2. Or at least that the information it may have
is not useful.
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

Marginal likelihood uses conditioning the other way around.
Suppose we can write the joint density of a sufficient statistic
T = (U,V ) as

f (u | v ;λ, ψ)f (v ;ψ),

where ψ is the parameter of interest. Then the nuisance parameter
λ can be eliminated by marginalization as it does not enter in the
marginal distribution of V . Inference for ψ can now be based on
the marginal likelihood function

L(ψ; v) = f (v ;ψ).

The issue is also here whether (useful) information about ψ is lost
by ignoring the factor f (u | v ;λ, ψ).
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

In the normal example with many nuisance parameters with
λ = (µi , i = 1, . . . , n) and ψ = τ2 we get

L(τ2; w) = f (w ; τ2) = (τ2)−n/2e−
w

2τ2 ,

which in this case is identical to the conditional likelihood function
considered earlier and hence τ̂2

w = W /n.

Marginal likelihood is in this case also known as residual likelihood
because it is based on the residuals

Ri1 = Xi1 − µ̂i1 = Xi1 −
Xi1 + Xi2

2
=

Xi1 − Xi2

2
= Vi

Ri2 = Xi2 − µ̂i2 = Xi2 −
Xi1 + Xi2

2
= −Vi .

The corresponding estimates are then known as REML estimates.
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

Marginal and conditional likelihood changes the problem either by
ignoring some of the data (by marginalization) or by ignoring their
variability (by conditioning).

Profile likelihood attempts to stick to the original data distribution
and likelihood function, but eliminates the nuisance parameters by
maximization.

The profile likelihood function L̂(ψ) for ψ is defined as

L̂(ψ) = sup
λ

L(ψ, λ) = L{ψ, λ̂(ψ)},

where ψ is the parameter of interest and λ̂(ψ) is the MLE of λ
when ψ is considered fixed.
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

Although the profile likelihood generally can be very useful, it does
not help in the the normal example with many nuisance parameters
with λ = (µi , i = 1, . . . , n) and ψ = τ2 we get

L̂(τ2; w) = f (u; µ̂, τ2)f (w ; τ2) = (τ2)−ne−
w

2τ2 ,

hence also peaks in the wrong place, at τ̂2 = W /(2n).

We shall later return to various attempts at modifying the profile
likelihood.
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

Another way of removing nuisance parameters from the likelihood
is to use integration. This method is essentially Bayesian and
demands the specification of a prior distribution π(λ |ψ) of the
nuisance parameter for fixed ψ.

The integrated likelihood function is then defined as

L̄(ψ) =

∫
L(ψ, λ)π(λ |ψ) dλ.

The integrated likelihood has the same fundamental relation to the
marginal prior and posterior distributions as the ordinary likelihood.

For if π(ψ) is the prior on ψ, the full posterior distribution is
determined as

π∗(ψ, λ) ∝ π(ψ)π(λ |ψ)L(ψ, λ)

and thus, by integration

π∗(ψ) ∝
∫
π∗(ψ, λ) dλ = π(ψ)L̄(ψ).
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Conditional likelihood
Marginal likelihood
Profile likelihood
Integrated likelihood

In the normal example with many nuisance parameters, we may for
example consider µi independent and normally distributed as
µi ∼ N (α, ω2), where (α, ω2) represent prior knowledge about the
population from which µi ’s are taken.

The integrated likelihood for τ2 can then be calculated as

L̄(τ2) = f (w ; τ2)

∫ ∏
i

f (ui ;µi )π(µi ;α, ω
2) dµi .

The integral can be recognized as the marginal distribution of U
where now Ui are independent and identically distributed as
N (α, τ2 + ω2).
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Profile likelihood
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Thus

L̄(τ2) ∝ f (w ; τ2)(τ2 + ω2)−n/2e
− 1

2(τ2+ω2)

∑
i (ui−α)2

∝ (τ2)−n/2e−
w

2τ2 (τ2 + ω2)−n/2e
− qα(u)

2(τ2+ω2)

where
Qα(U) =

∑
i

(Ui − α)2.

In this calculation, ω2 and α are known and fixed. If these are
‘correct’, in the sense that µi are in fact behaving as if they were
i.i.d. N (α, ω2), then the integrated likelihood will peak around the
correct value, else the peak will be shifted to an incorrect position.
So the influence of the prior prevails.

Empirical Bayes or, equivalently(!), MLE in the random effects
model, would also estimate α and ω2 and get it right, as would
Hierarchical Bayes, assigning a prior on (α, ω2).
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