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Consider two alternative models M1 = {f (x ; θ), θ ∈ Θ1} and
M2 = {f (x ; θ), θ ∈ Θ2} for a sample X = x .

Without having a prior distribution we could in principle address
the question of which of these are more adequate by considering
the maximized likelihood ratio

Λ =
supΘ1

L(θ)

supΘ2
L(θ)

=
L(θ̂1)

L(θ̂2)
.

Note that the quantities L(θ̂j) can be considered as the profile

likelihoods L̂j of the ‘model label’ j , considering θ as a nuisance
parameter.

Thus, this ratio is analogous to the Bayes factor, which is the ratio
of the integrated likelihoods.
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If the models are nested in the sense that

Θ1 ⊆ Θ2

the likelihood ratio

Λ =
supΘ1

L(θ)

supΘ2
L(θ)

=
L(θ̂1)

L(θ̂2)

will always be less than or equal to 1, so will always prefer the
larger model as a description for the data.

There are many reasons this is not adequate, hence Λ as above is
rarely used as a measure of relative accuracy of two models and
some penalty for complexity is applied, for example as in the BIC.

Steffen Lauritzen, University of Oxford Alternative Model Comparison Methods



Maximized likelihood
Hypothesis testing

Prediction risk

If the models are nested, one may in principle consider the p-value

p = P{−2 log Λ ≥ −2 log λobs; M1} (1)

i.e. the probability that the ratio Λ is less that the observed value,
assuming the simpler model is true.

If the p-value is very small, corresponding to Λ1 being unusually
small, this will be taken as evidence against M1, and so M2 is
favoured.

In contrast, if p is moderate, M1 would be favoured over M2 as the
simpler explanation of the data.

Steffen Lauritzen, University of Oxford Alternative Model Comparison Methods



Maximized likelihood
Hypothesis testing

Prediction risk

This approach has several problems, including:

I it does not make clear sense unless M2 has been established
as adequate

I it does not make sense if the models Mi are not nested

I when many models Mi are considered, it is hard to control the
probability of favouring an incorrect model by chance

I Arbitrary thresholds for the significance level must be set and
it is hard to give precise guidelines for this.
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This approach has several problems, including:

I it does not make clear sense unless M2 has been established
as adequate

I it does not make sense if the models Mi are not nested

I when many models Mi are considered, it is hard to control the
probability of favouring an incorrect model by chance

I Arbitrary thresholds for the significance level must be set and
it is hard to give precise guidelines for this.

Nevertheless, the methodology is often used and it appears often
to behave a lot better than what theory immediately suggests.
Recent systematic studies of principles associated with this way
seem to confirm that.
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Consider the problem of choosing between including different
subsets of variables in linear regression.

Consider the problem of predicting an n-dimensional vector Y with
expectation µ from explanatory variables X . The total mean
square prediction error would be

E(||Y − Ŷ ||2) = E{||µ− µ̂||2}+ E{||Y − E(Y )||2},

where ||v ||2 =
∑

i v 2
i is the squared error norm.

The second term in this expression is the intrinsic random error
and we can do nothing about it. The first term is the squared
prediction risk

R = E{||µ− µ̂||2}

and we would wish to choose a model for µ(X ) which makes this
risk small.
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If it holds that µ = Xβ and we use a linear model of the form

µS(X ) = X (S)βS

where S is a subset of d elements of the covariates so

xi (S) = (xij , j ∈ S)

we thus have the prediction risk

R = E{||Xβ − X (S)β̂S ||2} = dσ2 + B(S)

where B(S) is a bias term

B(S) = ||µ− µS(X )||2 = ||Xβ − X (S)βS ||2

with B(S) = 0 if the true distribution satisfies βj = 0 for j 6∈ S .
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The corresponding residual sum of squares has expectation

E(RSS) = E{||Y − X (S)β̂||2} = (n − d)σ2 + B(S).

Thus, if we add (2d − n)σ2 to both sides this equation, we get an
unbiased estimate of the prediction risk from the residual sum of
squares

R̂(S) = RSS + (2d − n)σ2.

Mallows Cp uses now an unbiased estimate of σ2, typically based
on the residual sum of squares for the model with all the variables
included, to estimate the risk so that

Cp =
RSS

σ̂2
+ 2d − n.

Choosing a model S can now be based on this criterion. Note that
this also penalizes models with many parameters.
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Akaike’s Information Criterion (AIC) is based on exactly the same
idea as Cp, but it is more general and is not restricted to regression
models.

Akaike suggests assessing the prediction error by the
Kullback-Leibler distance to the true distribution g :

D(g , θ) =

∫
g(x) log f (x , θ) dx−

∫
g(x) log g(x) dx = S(g , θ)+H(g).

The AIC is an approximately unbiased estimate of −2nS(g , θ̂)
which can be shown to reduce to

AICi = l(θ̂i )− di

so
2∆AIC = D + 2(d1 − d2).
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AIC is equivalent to Mallows Cp for linear regression models.

AIC gives typically lower penalty for complexity than BIC, in
particular as n→∞, since the penalty for complexity is 2(d2 − d1)
rather than log n(d2 − d1).

In particular the AIC does not share the consistency property of the
BIC.
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