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We consider data arriving sequentially X1, . . . ,Xn, . . . and wish to
update inference on an unknown parameter θ online.

In a Bayesian setting, we have a prior distribution π(θ) and at time
n we have a density for data conditional on θ as

f (x1, . . . , xn | θ) = f (x1 | θ)f (x2 | x1, θ) · · · f (xn | xn−1, θ)

where we have let xi = (x1, . . . , xi ). Note that we are not assuming
X1, . . . ,Xn, . . . to be independent conditionally on θ.

At time n, we may have updated our distribution of θ to its
posterior

πn(θ) = f (θ | xn) ∝ π(θ)f (xn | θ).
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If we obtain a new observation Xn+1 = xn+1 we may either start
afresh and write

πn+1(θ) = f (θ | xn+1) ∝ π(θ)f (xn+1 | θ)

or we could claim that just before time n + 1, our knowledge of θ
is summarized in the distribution πn(θ) so we just use this as a
prior distribution for the new piece of information and update as

π̃n+1(θ) ∝ πn(θ)f (xn+1 | xn, θ).

Indeed, these updates are identical since

π̃n+1(θ) ∝ πn(θ)f (xn+1 | xn, θ)

∝ π(θ)f (xn | θ)f (xn+1 | xn, θ)

= π(θ)f (xn+1 | θ) ∝ πn+1(θ).
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We may summarize these facts by replacing the usual expression
for a Bayesian updating scheme

posterior ∝ prior× likelihood

with
revised ∝ current× new likelihood

represented by the formula

πn+1(θ) ∝ πn(θ)× Ln+1(θ) = πn(θ)f (xn+1 | xn, θ).

In this dynamic perspective we notice that at time n we only need
to keep a representation of πn and otherwise can ignore the past.

The current πn contains all information needed to revise knowledge
when confronted with new information Ln+1(θ).

We sometimes refer to this way of updating as recursive.
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The previous considerations take on a particular dynamic form
when also the parameter or state θ is changing with time. More
precisely, we consider a Markovian model for the state dynamics of
the form

f (θ0) = π(θ0), f (θi+1 | θi) = f (θi+1 | θi )

where the evolving states θ0, θ1, . . . are not directly observed, but
information about them are available through sequential
observations Xi = xi , where

f (xi | θi, xi−1) = f (xi | θi )

so the joint density of states and observations is

f (xn, θn) = π(θ0)
n∏

i=1

f (θi | θi−1)f (xi | θi ).

Steffen Lauritzen, University of Oxford Sequential Bayesian Updating



Fixed state
Evolving state
Kalman filter

Particle filters

Basic dynamic model
Fundamental tasks
Prediction and filtering
Smoothing

This type of model is common in robotics, speech recognition,
target tracking, and steering/control, for example of large ships,
airplanes, and space ships.

The natural tasks associated with inference about the evolving
state θi are known as

I Filtering: Find f (θn | xn). What is the current state?

I Prediction: Find f (θn+1 | xn). What is the next state?

I Smoothing: Find f (θj | xn), j < n. What was the past state at
time j?
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If the filter distribution f (θn | xn) is available we may calculate the
predictive distribution as

f (θn+1 | xn) =

∫
θn

f (θn+1 | θn)f (θn | xn) dθn (1)

which uses the current filter distribution and the dynamic model.
When a new observation Xn+1 = xn+1 is obtained, we can use

revised ∝ current× new likelihood

to update the filter distribution as

f (θn+1 | xn+1) ∝ f (θn+1 | xn)f (xn+1 | θn+1), (2)

i.e. the updated filter distribution is found by combining the
current predictive with the incoming likelihood. The predictive
distributions can now be updated to yield a general recursive
scheme of predict-observe-filter-predict-observe-filter. . .
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When we have more time, we may similarly look retrospectively
and try to reconstruct the movements of θ. This calculation is
slightly more subtle than filtering. We first get

f (θj−1 | xn) =

∫
θj

f (θj−1 | θj , xn)f (θj | xn) dθj

=

∫
θj

f (θj−1 | θj , xj−1)f (θj | xn) dθj ,

where we have used that

f (θj−1, θj , xn) = f (θj−1, θj , xj−1)f (xj , . . . , xn | θj , θj−1)

= f (θj−1, θj , xj−1)f (xj , . . . , xn | θj)

and
f (θj , xn) = f (θj , xj−1)f (xj , . . . , xn | θj)

so
f (θj−1 | θj , xn) = f (θj−1 | θj , xj−1).
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Since we can think of f (θj | θj−1) as a likelihood in θj we further get

f (θj−1 | θj , xj−1) ∝ f (θj | θj−1)f (θj−1 | xj−1)

we thus get

f (θj−1 | xn) ∝
∫

θj

f (θj | θj−1)f (θj−1 | xj−1)f (θj | xn) dθj

∝ f (θj−1 | xj−1)

∫
θj

f (θj | θj−1)f (θj | xn) dθj ,

Which is the basic smoothing recursion:

f (θj−1 | xn) ∝ f (θj−1 | xj−1)

∫
θj

f (θj | θj−1)f (θj | xn) dθj . (3)

It demands that we have stored a representation of the filter
distributions f (θj−1 | xj−1) as well as the dynamic state model.
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A special case of the previous is traditionally attributed to Kalman
from a result in 1960, and known as the Kalman filter and
smoother but was in fact developed in full detail by the Danish
statistician T.N. Thiele in 1880.

It is based on the Markovian state model

θi+1 | θi ∼ N (θi , σ
2
i+1), θ0 = 0

and the simple observational model

Xi | θi ∼ N (θi , τ
2
i ), i = 1, . . .

where typically σ2
i = (ti − ti−1)σ2 and τ2

i = τ2 with ti denoting
the time of the ith observation. For simplicity we shall assume
ti = i and wi = 1 in the following.
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The filtering relations become particularly simple, since the
conditional distributions all are normal, and we are only concerned
with expectations and variances.

We repeat Thiele’s argument as an instance of the general theory
developed.

Suppose at time n we have the filter distribution of θn as
N (µn, ω

2
n). Then the predictive distribution of θn+1 is

θn+1 | xn ∼ N (µn, ω
2
n + σ2).

We can think of µn as our current best measurement of θn+1, with
this variance.

The contribution from the observation is a measurement of θn+1

with a value of xn+1 and a variance τ2. The best way of combining
these estimates is to take a weighted average with the inverse
variances as weights.
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It follows that our new filter distribution has expectation

µn+1 =
µn/(ω2

n + σ2) + xn+1/τ
2

(ω2
n + σ2)−1 + τ−2

=
τ2µn + (σ2 + ω2

n)xn+1

τ2 + σ2 + ω2
n

and variance

ω2
n+1 =

1

(ω2
n + σ2)−1 + τ−2

=
τ2(σ2 + ω2

n)

τ2 + σ2 + ω2
n

.

Clearly this result could also have been obtained from expanding
the sum of squares in the expression for the filter distribution (2)

f (θn+1 | xn) ∝ exp

{
−(θn+1 − µn)2

2(σ2 + ω2
n)

+
(θn+1 − xn+1)2

2τ2

}
.
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We may elaborate the expression for µn+1 and write it as a
correction of µn or of xn+1 as

µn+1 = µn +
σ2 + ω2

n

τ2 + σ2 + ω2
n

(xn+1 − µn)

or

µn+1 = xn+1 −
τ2

τ2 + σ2 + ω2
n

(xn+1 − µn)

showing how at each stage n the filtered value is obtained by
modifying the observed and predicted values when the prediction is
not on target.

The Kalman filter readily generalizes to the multivariate case and
more complex models for the state evolution and observation
equation. We abstain from further details.
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This geometric construction of the Kalman filter and smoother is
taken from Thiele (1880).
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One of the most recent developments in modern statistics is using
Monte Carlo methods for representing the predictive and filtered
distributions.

We assume that we at time n have represented the filter
distribution (2) by a sample

f (θn | xn) ∼ {θ1
n, . . . , θ

M}

so that we would approximate any integral w.r.t. this density as∫
h(θn)f (θn | xn) dθn ≈

M∑
i=1

h(θi
n).

The values {θ1
n, . . . , θ

M
n } are generally referred to as particles.
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More generally, we may have the particles associated with weights

f (θn | xn) ∼ {(θ1
n,w

1
n ), . . . , (θM ,wM

n )}

with
∑M

i=1 w i
n = 1, so that the integral is approximated by

∫
h(θn)f (θn | xn) dθn ≈

M∑
i=1

h(θi
n)w i

n. (4)

Typically, wi will reflect that we have been sampling from a
proposal distribution g(θn) rather than the target distribution
f (θn | xn) so the weights are calculated as

w i
n = f (θi

n | xn)/g(θi
n).
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When filtering to obtain particles representing the next stage of
the filtering distribution we move each particle a random amount
by drawing θi

n+1 at random from a proposal distribution
gn+1(θ | θi

n, xn+1) and subsequently reweight the particle as

w i
n+1 ∝ w i

n

f (θi
n+1 | θi

n)f (xn+1 | θi
n+1)

gn+1(θi
n+1 | θi

n, xn+1)

the numerator being proportional to f (θi
n+1 | θi

n, xn+1).

There are many possible proposal distributions but a common
choice is a normal distribution with an approximately correct mean
and slightly enlarged variance.
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The approximate inverse variance of the integral (4) is for the
constant function h ≡ 1 equal to

M̃n =
1∑

i (w i
n)2

which is known as effective number of particles. It is maximized for
w i ≡ 1/M which represents weights obtained when sampling from
the correct distribution.

As the filtering evolves, it may happen that some weights become
very small, reflecting bad particles, which are placed in areas of
small probability. This leads to the effective number of particles
becoming small.

Steffen Lauritzen, University of Oxford Sequential Bayesian Updating



Fixed state
Evolving state
Kalman filter

Particle filters

Basic Monte Carlo representation
Moving and reweighting particles
Effective number of particles
Resampling and replenishing

To get rid of these, M new particles are resampled with
replacement, the probability for choosing particle i at each
sampling being equal to w i so that bad particles have high
probability of not being included. This creates now a new set of
particles which now all have weight 1/M.
However, some particles will now be repeated in the sample and
when this has been done many times, there may be only few
particles left.

Various schemes then exist for replenishing and sampling new
particles.

This can also be done routinely at each filtering, for example by
first sampling two new particles for every existing one and
subsequently resampling as above to retain exactly M particles.
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