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Wishart distribution

ic properties

nsity
g the Wishart distribution

The Wishart distribution is the sampling distribution of the matrix
of sums of squares and products. More precisely:

A random d x d matrix W has a d-dimensional Wishart
distribution with parameter X and n degrees of freedom if

n
w23 XX
i=1

where X, ~ Ny4(0,X). We then write
W ~ Wq(n, X).

The Wishart is the multivariate analogue to the x?:
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Basic properties

Wishart distribution (VBTG eIy

Partitioning the Wishart distribution
Example

If Wi and Wa are independent with W; ~ Wy(n;, X), then
Wi + Wo ~ Wy(n1 + n2, X).
If Ais an r x d matrix and W ~ Wy(n, X), then
AWAT ~ W, (n,AZAT).
For r = 1 we get that when W ~ Wy(n,X) and X € R¢,
ATWA ~ a3x3(n),

where af\ =T\
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Basic properties
i density

Wishart distribution

the Wishart distribution
Example

If W~ Wy(n,X), where X is regular, then W is regular with
probability one if and only if n > d.

When n > d the Wishart distribution has density
fa(w|n,X)
= c(d,n) " Y(det £)""2(det w)("=d-D/2e=tr(="1w)/2

for w positive definite, and 0 otherwise.
The Wishart constant c¢(d, n) is

d
c(d,n) =22 2m) @ DATT T {(n+1-i)/2}.
i=1
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Basic properties

Wishart distribution (VPR ey

Partitioning the Wishart distribution
Example

Let W ~ Wy(n,X) with X regular and n > d. Then Wy, is regular
with probability one and

(i) Wyp is independent of (W2, Wa2);

) Wi ~Wi(n—s,Z1p);
(i) Waa ~ Ws(n, L2);

) The conditional distribution of Wiy given Way = way is
multivariate Gaussian N,X5(2122521W22,A) where

12
Nij i = Cov(Wij, Wiy | Wap = woz) = 0, wj.
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. P Basic properties
Wishart distribution (VPR ey

Partitioning the Wishart distribution
Example

In the special case with 15 = 0 this can be simplified to
Wijp ~ Wi(n —s,%11) and

Wiz | Wao = wap ~ Npxs(0,A)

with /\ij,k/ = Ok Wj|.

It follows that in this case, i.e. when X15 = 0, it holds that

Wia Wit Way ~ Wi, (s, X11).
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Basic properties

Wishart distribution (VPR ey

Partitioning the Wishart distribution
Example

Consider N3(0,X) with covariance matrix
1 11
Y=1121
11 2
The conditional distribution of (X1, X2) given X3 has covariance

matrix
1/1 1
- 2(11)
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Basic properties

Wishart distribution (VPR ey

Partitioning the Wishart distribution
Example

Suppose we have W ~ W(n,X) with X as specified. Then

W _ < Wii — WitWh  Wip — Wt WisWas )
1213 Wor — Wit WorWos  Wap — W' W3
~ W(n -1, Z12\3)
and independent of (W13, Whos, W33).

The conditional distribution of (W3, Wa3)T given Waz = ws3 is
bivariate Gaussian, with mean

(7)ot (1203

and covariance matrix

w3z (1 1
W33212|3 = o < 1 3 ) .
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Definition
Wilks’ distribution and Hotelling’s T2 Testing for independence

Hotelling’s T ’

If Wi ~ Wy(f,E) and Ws ~ Wy(f, ) with i > d, then the

distribution of
det( Wl)

~ det(W4 + Wh)
is Wilks" distribution and denoted by A(d, fi, f2). It holds that

d

ANET] B

i=1
where B; are independent and follow Beta distributions with

Bi ~ B{(fi +1—1i)/2,£/2)}.
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Definition
Wilks’ distribution and Hotelling’s T2 i independence

T

Wilks' distribution occurs as the likelihood ratio test for
independence. Consider W ~ Wy(f,X) and the hypothesis that
3 12 = 0 for a fixed block partitioning of  into r X r, r X s and
s X s matrices. The likelihood ratio statistic then becomes

L(I’A(HZ\I’A(QQ) _ { det(W) }n/2 _ Un/2,
L(K) det( W11)det(W22)

where

U~Nr,f—s,s)=Ns,f—r,r).

It follows that

/\(dv f17 f2) = /\(f27 fl + f2 - da d)
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Definition
Wilks’ distribution and Hotelling’s T2 Testing for independence
Hotelling’s T

Example: the bivariate case

Consider Z = (X, Y)T and assume Z ~ N(0, X) with

Y — U§< POXOYy
POXTY 0§< '
From data Zi,..., Z,, form the Wishart matrix
W — ZiXi2 ZinYf
B ZiXiYi Zi Yi2 '

Wilks" A for independence then becomes

A= LR2/n_ ZIXFZI )/iz_(ZiXi\/i)z -1— R2
- B Y XEYYE N '

Thisis A(1,n—1,1) so (n —1)R?/(1 — R?) ~ F(n—1,1).
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Definition
Wilks’ distribution and Hotelling’s T2 Testing for independence

Hotelling’s T

Hotelling’s T2 is the equivalent of Student’s t-distribution. Let
Y ~ Ng(p, cX), W ~ Wy(f,X) with f > d, and Y 1L W.

T2=f(Y —p) WY —p)/c

is known as Hotelling's T2.
It holds that

1

and
f—d+1

fd
where F denotes Fisher's F-distribution.

T2~ F(d,f+1—d)
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Inverse Wishart distribution
Posterior updating

Conjugate Bayesian analysis

Recall that the Wishart density has the form
fy(w|n, ) o (det w)(7=d-1)/2g=tr(x7"w)/2
Since the likelihood function for ¥ is
L(K) = (det K)"/2e= tr(KW)/2
a conjugate family of distributions for K is given by
7(K; a, W) o (det K)3/2~ e tr(KV)/2,

which thus specifies a Wishart distribution for the concentration
matrix.
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Inverse Wishart distribution
Posterior updating

Conjugate Bayesian analysis

We then say that ¥ follows an inverse Wishart distribution if
K = ¥~ follows a Wishart distribution, formally expressed as

Y~ IWg(0, V) = K=X 1o Wy(6+d—1,071,
i.e. if the density of K has the form
F(K|0,V)  (det K)%/21e=tr(VK)/2,
We repeat the expression for the standard Wishart density:
fa(w|n, ) o (det w)(=d-1)/2g=tr(x7"w)/2

It follows that the family of inverse Wishart distributions is a
conjugate family for X.
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Inverse Wishart distribution
Posterior updating

Conjugate Bayesian analysis

If the prior distribution of X is ZWq(0, V) and W | X ~ Wy(n, X),
we get for the posterior density of K that

FIK[0,W, W) o (det K)"/2e™tr(kKW)/2
x (det K)%/2~ 1= tr(VK)/2
= (det K)(n+0)/2-1g=tr{(V+W)K}/2

and hence the posterior distribution is simply

IW4(d + n, W+ W) =IWy(5*, V*).

We can thus interpret the parameter § as a prior equivalent sample
size and W as the value of a matrix of sums and squares and
products from a previous sample.
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