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An integral of form

I =

∫ b

a
e−λg(y)h(y) dy

where h(y) and g(y) are smooth and g has local minimum at
y∗ ∈ (a, b) can be approximated as

I = e−λg(y∗)h(y∗)

√
2π

λg ′′(y∗)

{
1 + O

(
1

λ

)}
.
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A more accurate approximation is

I = e−λg̃λ(ỹλ)

√
2π

λg̃ ′′λ (ỹλ)

{
1 +

5ρ̃3 − 3ρ̃4

24λ
+ O

(
1

λ2

)}
,

where now ỹλ maximizes g̃λ(y) = g(y)− λ−1 log h(y), and

ρ̃3 =
g̃

(3)
λ (ỹλ)

{g̃ ′′λ (ỹλ)}3/2
, ρ̃4 =

g̃
(4)
λ (ỹλ)

{g̃ ′′λ (ỹλ)}2
.
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It holds approximately for large n, that the posterior distribution of
θ is

θ ∼ Nd{θ̂, jn(θ̂)−1} = Nd(θ̂, j(θ̂)−1/n}.

A more accurate approximation is obtained from the Laplace
approximation to be

π∗(θ) =
exp{l(θ)}π(θ)∫

Θ exp{l(θ)}π(θ) dθ

= (2π/n)−d/2 exp{l(θ)− l(θ̂)}π(θ)

π(θ̂)

∣∣∣j(θ̂)
∣∣∣1/2
{1 + O(n−1)}.

Note in particular the expression for the normalization constant∫
Θ

f (x | θ)π(θ) dθ = (2π/n)d/2L(θ̂)π(θ̂)
∣∣∣j(θ̂)

∣∣∣−1/2
{1 + O(n−1)}.
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We consider a number of competing models Mj , j = 1, . . . ,m for
data X ; for example M1 might specify that the expectation of a
component Xi of X depends linearly on covariates Yi , an
alternative M2 may specify that it has a quadratic dependence,
whereas a third model M3 might specify that the expectation does
not depend on Yi at all.

Associated with each of these models are parameter spaces Θj and
prior distributions πj(θj) as well as prior model probabilities πj for
model Mj being the ‘correct’ description of affairs.
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The posterior probability for model Mj would then satisfy

π∗j ∝
∫

Θj

f (x | θj ,Mj)πj(θj) dθj × πj

i.e. it will as usual be proportional to the product of the marginal
or integrated likelihood L̄j of model Mj with the prior model
probability, πj where

L̄j = f (x |Mj) =

∫
Θj

f (x | θj ,Mj)πj(θj) dθj .
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Comparing two models yields

π∗j
π∗k

=
f (x |Mj)

f (x |Mk)
=

∫
Θj

f (x | θj ,Mj)πj(θj) dθj∫
Θ2

f (x | θk ,Mk)πk(θk) dθk

πj

πk
.

The factor

Bjk =
f (x |Mj)

f (x |Mk)
=

∫
Θj

f (x | θj ,Mj)πj(θj) dθj∫
Θ2

f (x | θk ,Mk)πk(θk) dθk
=

L̄j

L̄k
.

ia known as the Bayes Factor in favour of model j over model k.
Note that if the Bayesian model is taken to its consequence, this is
nothing but the usual likelihood ratio.
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Recall that Σ follows an inverse Wishart distribution if K = Σ−1

follows a Wishart distribution, formally expressed as

Σ ∼ IWd(δ,Ψ) ⇐⇒ K = Σ−1 ∼ Wd(δ + d − 1,Ψ−1),

i.e. if the density of K has the form

f (K | δ,Ψ) ∝ (det K )δ/2−1e− tr(ΨK)/2.
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The inverse Wishart distributions form a conjugate family for Σ. If
the prior distribution of Σ is IWd(δ,Ψ) and W |Σ ∼ Wd(n,Σ),
the posterior density of K is

f (K | δ,Ψ,W ) ∝ (det K )n/2e− tr(KW )/2

×(det K )δ/2−1e− tr(ΨK)/2

= (det K )(n+δ)/2−1e− tr{(Ψ+W )K}/2,

and hence the posterior distribution is simply
IWd(δ + n,Ψ + W ) = IWd(δ∗,Ψ∗).
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To calculate the Bayes factor for independence we need the full
form of the Wishart density for K :

fd(K | δ,Ψ)

= c(d , δ)−1(det Ψ)(δ+d−1)/2(det K )δ/2−1e− tr(ΨK)/2

The constant c(d , δ) is

c(d , δ) = 2(δ+d−1)d/2(2π)d(d−1)/4
d∏

i=1

Γ{(δ + d − i)/2}.
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The marginal density of W becomes

f (W | δ,Ψ) =

∫
f (W | n,K )f (K | δ,Ψ) dK

= (det W )(n−d−1)/2c(d , n)−1c(d , δ)−1(det Ψ)(δ+d−1)/2∫
(det K )(n+δ)/2−1e− tr{K(W +Ψ)}/2 dK

= (det W )(n−d−1)/2c(d , n)−1c(d , δ)−1(det Ψ)(δ+d−1)/2

{det(Ψ + W )}−(δ+n−1)/2c(d , n + δ)

=
(det W )(n−d−1)/2(det Ψ)(δ+d−1)/2

{det(Ψ + W )}(δ+n−1)/2

c(d , n + δ)

c(d , n)c(d , δ)
.
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Consider now alternative models M2 with Σ arbitrary and M1 with
Σ of block diagonal form, i.e. with

Σ =

(
Σ11 0

0 Σ22

)
.

If the associated prior distributions are for M2 that
Σ ∼ IWd(δ, Id) and for M1 that Σ11 ∼ IW r (δ, Ir ), and
Σ22 ∼ IWs(δ, Is), we can now calculate the Bayes factor.
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We get

B12 =
f (W11 | δ, Ir )f (W22 | δ, Is)

f (W | δ, Id)

=
(det W11)(n−r−1)/2(det W22)(n−s−1)/2

(det W )(n−d−1)/2

×
{

det(Id + W )

det(Ir + W11) det(Is + W22)

}(δ+n−1)/2)

× c(d , n)c(d , δ)c(r , n + δ)c(s, n + δ)

c(d , n + δ)c(r , n)c(r , δ)c(s, n)c(s, δ)

Note the similarity between the first fraction and Wilks’ Λ for
independence.
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In general the Bayes factor is difficult or impossible to calculate
explicitly.
Recall that for competing models M1 and M2 with parameters
θ1 ∈ Θ1 ∈ Rd1 and θ2 ∈ Θ2 ∈ Rd2 and prior distributions π1, π2,
the Bayes factor B in favour of M1 over M2 is

B =
f (x1, . . . , xn |M1)

f (x1, . . . , xn |M2)
=

∫
Θ1

f (x | θ1,M1)π1(θ1) dθ1∫
Θ2

f (x | θ2,M2)π2(θ2) dθ2
.

Recall the approximate expression obtained for the Bayesian
marginal likelihood using Laplace’s method∫

Θ
f (x | θ)π(θ) dθ = (2π/n)d/2L(θ̂)π(θ̂)

∣∣∣j(θ̂)
∣∣∣−1/2

{1 + O(n−1)}.
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We then get

B = (2π)(d1−d2)/2n(d2−d1)/2 L(θ̂1)π(θ̂1)

L(θ̂2)π(θ̂2)

∣∣∣j2(θ̂2)
∣∣∣1/2

∣∣∣j1(θ̂1)
∣∣∣1/2
{1 + O(n−1)}.

To study the asymptotic behaviour of the Bayes factor we take
logarithms and collect terms of similar order to get

log B = n{̄ln(θ̂1)− l̄n(θ̂2)}+
d2 − d1

2
log n + log{π(θ̂1)/π(θ̂2)}

−1

2
log
{∣∣∣j1(θ̂2)

∣∣∣ / ∣∣∣j1(θ̂1)
∣∣∣}− d2 − d1

2
log(2π) + O(n−1).
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The dominating terms are those on the first line, as all other terms
are of smaller order for n→∞. Ignoring the latter we get

log B ≈ {l(θ̂1)− l(θ̂2)} − d1 − d2

2
log n.

The right-hand side is the Bayesian Information Criterion (BIC). It
reflects that, for large n, the Bayes factor will favour the model
with highest maximized likelihood (the first term), but will also
penalize the model having the largest number of parameters.

The prior distributions πi do not enter in the expression for BIC
which may or may not be seen as an advantage.

Models with a high value of BIC would be preferred over models
with a low value of BIC.
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One can get a more accurate approximation of the Bayes factor by
adding terms

−1

2
log
{∣∣∣ji (θ̂2)

∣∣∣}+
di

2
log(2π)

but this correction is not increasing with n, so it is most commonly
ignored.

For the comparison of two models we get

∆BIC = l(θ̂1)− l(θ̂2) +
d1 − d2

2
log n

= − log LR +
d1 − d2

2
log n.

Thus, in comparison with straight maximized likelihood, the
simpler model gets preference by entertaining a lower penalty.
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In the nested case, if d1 < d2 the deviance difference between the
models is D = −2 log LR so

2∆BIC = D + (d1 − d2) log n.

If the true value of the parameter θ0 ∈ M1 ⊆ M2, the deviance D
would under suitable regularity conditions be approximately
χ2(d2 − d1). The penalty term will thus dominate for large values
of n, so the simpler model will eventually be chosen.

In this sense, BIC will asymptotically choose the simplest model
which is correct, often referred to as consistency of the BIC.
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