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Consider an experiment with two instruments available:

One instrument is very precise and produces measurements
N (θ, 1). The other instrument is older and less accurate; it
produces measurements which are N (θ, 100).

We wish to check whether a parameter θ = 0, the alternative being
that θ > 0.

Toss a fair coin and let A = i , i = 1, 2 denote that the instrument i
is chosen. Perform then the measurement to obtain X . The joint
distribution of (X ,A) is determined as

f (x , a; θ) = φ(x − θ)1{1}(a)/2 + φ{(x − θ)/10}1{2}(a)/2.

Suppose we have chosen the first instrument and observe X = 4.
Is this consistent with the assumption θ = 0?
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The p-value is

p = P(X > 4; θ = 0) = {1− Φ(4)}/2 + {1− Φ(.4)}/2 = .1723,

so there is nothing to worry about?

However, we did in fact use the precise instrument. So, with a
standard deviation of 1, a value of X = 4 should be very unlikely.
Why should it matter that we could have used the other
instrument, but didn’t?

Should we not rather have considered A = a fixed and condition on
the actual instrument used? That is, calculate the p-value as

p̃ = P(X > 4 |A = 1; θ = 0) = {1− Φ(4)} = .00003

giving very strong evidence against the hypothesis.
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A statistic A = a(X ) is said to be ancillary if

(i) The distribution of A does not depend on θ;

(ii) there is a statistic T = t(X ) so that S = (T ,A) taken
together are minimal sufficient.

Intuitively A is then uninformative about the unknown parameter.

In the example just given, A is such an ancillary statistic since
θ̂ = X can play the role of T as (X ,A) clearly is jointly (minimal)
sufficient.

The word ‘ancillary’ both means secondary and auxiliary, each
meaning referring to each of the two conditions.

Notion of ancillarity seems fundamental in statistics and is due to
Fisher, but its role is less clear than that of sufficiency.
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Various forms of the conditionality principle say that the
distribution used for inference should be conditional on any
ancillary, such as the instrument actually used.

Note this is a frequentist concept and plays little role in a Bayesian
paradigm.

In the Fisherian paradigm, we should not compare the
measurement obtained to anything we could have seen, but did
not. Rather we should define a relevant reference set of values, for
example by conditioning with an ancillary statistic, and use this set
for inference calculations.

The relevant reference set may not simply be the original sample
space!

Steffen Lauritzen, University of Oxford Ancillarity and Conditional Inference



Ancillarity
Conditionality

Reference set
Inference principles
Completeness
Exponential families
Basu’s Theorem

In a Bayesian paradigm we only consider the value observed trough
the likelihood function, which modifies the prior distribution into
the posterior.

The likelihood function when observing X = 4,A = 1 would be

L(θ |X = 4, a = 1) ∝ φ(4− θ)

which in itself appears to give very strong evidence against θ = 0.
In fact, the likelihood ratio is

L(0 |X = 4, a = 1)/L(4 |X = 4, a = 1) = φ(4)/φ(0) = 0.0003355.

but in the Bayesian paradigm we must combine with a prior
distribution over to quantify exactly how much this modifies our
beliefs about θ.
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In general, if the MLE θ̂ is not sufficient, it is often possible to find
an ancillary statistic A so that (θ̂,A) is jointly sufficient. Then
since

f (x ; θ) = h(x)k{θ̂(x), a(x); θ}

we also have

f (x |A = a; θ) ∝ h(x)k{θ̂(x), a; θ}.

Thus if A is ancillary for θ̂, then θ̂ is sufficient when considering
the conditional distribution given the ancillary A.

This is yet another argument for considering using the conditional
distribution as a reference distribution.
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It has several time been attempted to give statistical inference a
firm foundation through so-called inference principles, for example:

I The sufficiency principle (S) says that if S = s(X ) is a
sufficient statistic, S carries the same evidence for the
parameter θ as does X .

I The conditionality principle (C) says that if A = a(X ) is
ancillary, then the conditional distribution given A = a(xobs),
carries the same evidence as the unconditional experiment.

I The likelihood principle (L) says that all evidence in an
experiment is summarized in the likelihood function.
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Birnbaum’s theorem

Whereas some variant of (S) and (C) are commonly accepted
among statisticians, (L) is not.

Birnbaum showed in 1972 that (S) and (C) combined are
equivalent to (L)!

Reactions on this result have been different. The theorem depends
heavily on the precise formulation of the principles (weak and
strong forms) and is therefore not generally accepted as a fact.

Bayesian inference obeys (L) in the strongest form.

Attitudes towards this fact are varied. . .
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A statistic T = t(X ) is said to be complete w.r.t. θ if for all
functions h

Eθ{h(T )} = 0 for all θ =⇒ h(t) = 0 a.s.

It is boundedly complete if the same holds when only bounded
functions h are considered.

It would be more precise to say the family of densities of T

FT = {fT (t; θ), θ ∈ Θ}

is complete, but the shorter usage has become common.

The Lehmann-Scheffé theorem says that if a sufficient statistic is
complete, it is also minimal sufficient.
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Consider an exponential family, with densities

f (x ; θ) = b(x)ea(θ)>t(x)−c(θ), x ∈ X .

If the family is linear, then T = t(X ) is boundedly complete and
sufficient.

This is a non-trivial result. The proof uses analytic function theory
and is outside the scope of this course.

The case of a linear exponential family is essentially the only case
where a complete sufficient statistic exists, or at least where this
can be proved.

For curved exponential families there is typically no complete
sufficient statistic.
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Sometimes it does not matter, whether we condition on A or not:

If T = t(X ) is complete and sufficient for θ and the distribution of
A does not depend on θ, then T and A are independent.

Here is a nice application of this:

If (X1, . . . ,Xn) is a sample from the normal distribution N (µ, σ2)
with known variance σ2 = σ2

0, it holds that µ̂ = X̄ complete and
sufficient. Since the distribution of

∑
(Xi − X̄ )2 cannot depend on

µ, it follows that X̄ and
∑

(Xi − X̄ )2 are independent.
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The proof is surprisingly simple: Let g be an arbitrary bounded
function of a and let m = Eθ{g(A)}. Note m does not depend on
θ as the distribution of A did not. Now let

h{t(x)} = Eθ[{g(A)−m} |T = t(x)]

which also does not depend on θ because T was sufficient.

Iterating expectations and using the definition of m yields

Eθ{h(T )} = EθEθ[g{A} −m |T ]

= Eθ{g(A)−m} = 0

for all θ. Completeness then implies

Eθ{g(A) |T = t(x)} = E{g(A)},

thus that A and T are independent.
Steffen Lauritzen, University of Oxford Ancillarity and Conditional Inference


	Ancillarity
	Example
	Definition

	Conditionality
	Reference set
	Inference principles
	Completeness
	Exponential families
	Basu's Theorem


