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A statistic A = a(X ) is said to be ancillary if

(i) The distribution of A does not depend on θ;

(ii) there is a statistic T = t(X ) so that S = (T ,A) taken
together are minimal sufficient.

If the MLE θ̂ is not sufficient, it is often possible to find an ancillary
statistic A so that (θ̂,A) is jointly sufficient. Then we also have

f (x |A = a; θ) ∝ h(x)k{θ̂(x), a; θ}.

Thus θ̂ is sufficient when considering the conditional distribution
given the ancillary A.
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I The sufficiency principle (S) says that if S = s(X ) is a
sufficient statistic, S carries the same evidence for the
parameter θ as does X .

I The conditionality principle (C) says that if A = a(X ) is
ancillary, then the conditional distribution given A = a(xobs),
carries the same evidence as the unconditional experiment.

I The likelihood principle (L) says that all evidence in an
experiment is summarized in the likelihood function.

Birnbaum’s theorem says that (S) and (C) combined are equivalent
to (L)!

Bayesian inference obeys (L) in the strongest form.
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A statistic T = t(X ) is said to be (boundedly) complete w.r.t. θ if
for all functions h

Eθ{h(T )} = 0 for all θ =⇒ h(t) = 0 a.s.

In a linear exponential family, the canonical statistic T = t(X ) is
boundedly complete and sufficient.

The Lehmann-Scheffé theorem: if a sufficient statistic is complete,
it is also minimal sufficient.

Basu’s theorem: If T = t(X ) is (boundedly) complete and
sufficient for θ and the distribution of A does not depend on θ,
then T and A are independent.
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One instrument produces measurements N (θ, 1), the other
measurements which are N (θ, 100).

We wish to check whether a parameter θ = 0, the alternative being
that θ > 0.

Toss a coin with probability λ of landing heads and let
A = i , i = 1, 2 denote that the instrument i is chosen. Perform
then the measurement to obtain X . The joint distribution of
(X ,A) is determined as

f (x , a; θ, λ) = φ(x − θ)1{1}(a)λ+ φ{(x − θ)/10}1{2}(a)(1− λ).

Suppose we have chosen the first instrument and observe X = 4.
Is this consistent with the assumption θ = 0?
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The parameter λ is nuisance parameter in the sense that we are
not interested in its value, but its value modifies the distribution of
our observations.

If we now redo the exercise from the case where λ is known, we
have the additional problem that the p-value

p = P(X > 4; θ = 0)

= {1− Φ(4)}λ+ {1− Φ(.4)}(1− λ)

= .00003λ+ .34458(1− λ)

unfortunately depends on the unknown λ.
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However, the probability of choosing the instrument seems
irrelevant once we know which instrument was in fact used.

Thus, again we would rather consider A = a fixed and condition on
the actual instrument used. That is, also here calculate the p-value
as

p̃ = P(X > 4 |A = 1; θ = 0) = {1− Φ(4)} = .00003

giving very strong evidence against the hypothesis. Note that λ
does not enter in this conditional calculation.

Motivated by this example, we consider more generally a family of
distributions f (x ; θ), θ ∈ Θ where θ is partitioned into θ = (ψ, λ).
We also assume that ψ is the parameter of interest and λ a
nuisance parameter.

Steffen Lauritzen, University of Oxford Nuisance parameters and their treatment



Summary of previous lecture
Nuisance parameters

Similarity

Example revisited
Ancillary cut
Likelihood perspective
Bayesian perspective

Suppose that there is a minimal sufficient statistic T = t(X )
partitioned as T = (S ,C ) = (s(X ), c(X )) where:

C1: the distribution of C depends on λ but not on ψ;

C2: the conditional distribution of S given C = c depends on ψ
but not λ, for all c ;

C3: the parameters vary independently, i.e. Θ = Ψ× Λ.

Then the likelihood function factorizes as

L(θ | x) ∝ f (s, c ; θ) = f (s | c ;ψ)f (c ;λ)

and we say that C is ancillary for ψ, S is conditionally sufficient for
ψ given C , and C is marginally sufficient for λ.

We also say that C is a cut for λ.
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When C is a cut, the likelihood factorizes as

L(θ | x) ∝ f (s, c ; θ) = f (s | c ;ψ)f (c ;λ) = L1(ψ | s, c)L2(λ | c).

Since ψ and λ vary independently, we may then maximize L by
maximizing each of these factors separately. In other words, the
maximum likelihood estimator θ̂ of the parameter θ satisfies

θ̂ = (ψ̂, λ̂), where ψ̂ = arg max
ψ

L1(ψ | s, c), λ̂ = arg max
λ

L2(λ | c).

Hence we get the same estimate whether we use the joint
distribution f(S ,C) for θ, or fS |C for ψ and fC for λ.

Note that the equation above may indicate a simple way of
maximizing the likelihood function.
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A widely accepted conditionality principle says that when C is a
cut for a nuisance parameter λ, inference about ψ should be based
on the conditional distribution of S given C.

In the simple example given, this corresponds to conditioning on
the instrument actually used when making inference about θ.

A possibly less well accepted principle says that when C is a cut for
λ, inference about λ should be based on the marginal distribution
of C .

Thus when making inference about the probability λ of choosing
the first instrument, we should ignore the fact that the instrument
was used, but only consider that it was chosen.
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Another example

Consider a sample X = (X1, . . . ,Xn) from a normal distribution
N (µ, σ2) where both µ and σ2 are unknown. Since
(X̄ ,S2 =

∑
i (Xi − X̄i )

2) is minimal sufficient, the likelihood
function becomes

L(µ, σ2 | x) ∝ f (x̄ ;µ, σ2)f (s2;σ2),

where we have used the independence of X̄ and S2 and the fact
that S2 follows a σ2χ2-distribution not depending on µ.

Here the situation is less clear cut. It could make sense to think of
x̄ as being sufficient for µ (which it is if σ2 is fixed) and S2 as
ancillary for µ and sufficient for σ2, but it does not fit into the
theory developed as the distribution of X̄ depends on (µ, σ2).
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Since Bayesian inference obeys the likelihood principle only the
factorization itself matters:

L(θ | x) ∝ L1(ψ | s, c)L2(λ | c).

Still, this fact is not unimportant. Assume that the prior density
satisfies

π(ψ, λ) = η(ψ)ρ(λ),

in other words that the parameters ψ and λ are prior independent.
Then the posterior density satisfies

π∗(ψ, λ) = π(ψ, λ | x) ∝ η(ψ)ρ(λ)L1(ψ | s, c)L2(λ | c) ∝ η∗(ψ)ρ∗(λ).

Hence if C is a cut for λ and ψ and λ are prior independent, they
are posterior independent.
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Consider the hypothesis that the parameter of interest ψ has a
specific value, i.e. H0 : ψ = ψ0. This is a composite hypothesis and
we wish to find a test of size α so the rejection region R satisfies

P(X ∈ R;ψ0, λ) = α for all values of λ ∈ Λ.

A test is said to be similar if this condition holds.

One way of constructing a similar test is to find a statistic C which
is sufficient for λ for fixed ψ = ψ0. This would in particular be the
case if C is a cut. Now look for a set R(c) such that

P(X ∈ R(c) |C = c ;ψ0, λ) = P(X ∈ R(c) |C = c ;ψ0) = α,

where we have used the sufficiency of C to remove λ.
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If we define R as x ∈ R ⇐⇒ x ∈ R(c(x)) we then get

P(X ∈ R;ψ0, λ) = E(ψ0,λ){P(X ∈ R |C ;ψ0)}
= E(ψ0,λ){P(X ∈ R(C ) |C ;ψ0)}
= E(ψ0,λ)(α) = α.

We have thus succeeded in constructing a similar test by this
conditioning operation.

A test of this kind is said to have Neyman structure. An important
result is that if C is complete and sufficient for λ for ψ = ψ0, then
any similar rejection region R has Neyman structure.
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This is shown as follows. Assume R is a similar rejection region, i.e.

P(X ∈ R;ψ0, λ) = α for all λ.

Then define h(C ) = P(X ∈ R |C ;ψ0)− α. We get

E(ψ0,λ){h(C )} = E(ψ0,λ){P(X ∈ R |C ;ψ0)− α}
= E(ψ0,λ){P(X ∈ R |C ;ψ0, λ)− α}
= P(X ∈ R;ψ0, λ)− α = 0.

Completeness yields h(C ) = 0 and P(X ∈ R |C ;ψ0)− α.

As a consequence of this result it is common, although not
universally accepted, to condition on the statistic sufficient under
the hypothesis when testing composite hypothesis, i.e. to construct
tests with Neyman structure.
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