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For a positive definite covariance matrix Σ, the multivariate
Gaussian distribution has density on Rd

f (x | ξ,Σ) = (2π)−d/2(det K )1/2e−(x−ξ)>K(x−ξ)/2, (1)

where K = Σ−1 is the concentration matrix of the distribution.
If X1 ∼ Nd(ξ1,Σ1) and X2 ∼ Nd(ξ2,Σ2) and X1⊥⊥X2

X1 + X2 ∼ Nd(ξ1 + ξ2,Σ1 + Σ2).

If A is an r × d matrix, b ∈ Rr and X ∼ Nd(ξ,Σ), then

Y = AX + b ∼ Nr (Aξ + b,AΣA>).
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Partition X into X1 and X2, where X1 ∈ Rr and X2 ∈ Rs with
r + s = d and partition mean vector, concentration and covariance
matrix accordingly.

Then, if X ∼ Nd(ξ, Σ)

X2 ∼ Ns(ξ2,Σ22).

If Σ22 is regular, it further holds that

X1 |X2 = x2 ∼ Nr (ξ1|2,Σ1|2),

where

ξ1|2 = ξ1 + Σ12Σ
−1
22 (x2 − ξ2) and Σ1|2 = Σ11 − Σ12Σ

−1
22 Σ21.

In particular, if Σ12 = 0 if and only if X1 and X2 are independent.
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From the matrix identities

K−1
11 = Σ11 − Σ12Σ

−1
22 Σ21 = Σ1 | 2 (2)

and
K−1

11 K12 = −Σ12Σ
−1
22 , (3)

it follows that then the conditional expectation and concentrations
also can be calculated as

ξ1|2 = ξ1 − K−1
11 K12(x2 − ξ2) and K1|2 = K11.

Note that the marginal covariance is simply expressed in terms of
Σ where as the conditional concentration is simply expressed in
terms of K.
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A square matrix A has trace

tr(A) =
∑

i

aii .

The trace has a number of properties:

1. tr(γA + µB) = γ tr(A) + µ tr(B) for γ, µ being scalars;

2. tr(A) = tr(A>);

3. tr(AB) = tr(BA)

4. tr(A) =
∑

i λi where λi are the eigenvalues of A.
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For symmetric matrices the last statement follows from taking an
orthogonal matrix O so that OAO> = diag(λ1, . . . , λd) and using

tr(OAO>) = tr(AO>O) = tr(A).

The trace is thus orthogonally invariant, as is the determinant:

det(OAO>) = det(O) det(A) det(O>) = 1 det(A)1 = det(A).

There is an important trick that we shall use again and again: For
λ ∈ Rd

λ>Aλ = tr(λ>Aλ) = tr(Aλλ>)

since λ>Aλ is a scalar.
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Consider first the case where ξ = 0 and a sample
X1 = x1, . . . ,Xn = xn from a multivariate Gaussian distribution
Nd(0,Σ) with Σ regular. Using (1), we get the likelihood function

L(K ) = (2π)−nd/2(det K )n/2e−
∑n

ν=1 x>ν Kxν/2

∝ (det K )n/2e−
∑n

ν=1 tr{Kxνx>ν }/2

= (det K )n/2e− tr{K
∑n

ν=1 xνx>ν }/2

= (det K )n/2e− tr(KW )/2. (4)

where

W =
n∑

ν=1

xνx
>
ν

is the matrix of sums of squares and products.
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Writing the trace out

tr(KW ) =
∑

i

∑
j

kijWji

emphasizes that it is linear in both K and W and we can recognize
this as a linear and canonical exponential family with K as the
canonical parameter and −W /2 as the canonical sufficient
statistic. Thus, the likelihood equation becomes

E(−W /2) == −nΣ/2 = −W /2

since E(W ) = nΣ. Solving, we get

K̂−1 = Σ̂ = W /n

in analogy with the univariate case.
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Rewriting the likelihood function as

log L(K ) =
n

2
log(det K )− tr(KW )/2

we can of course also differentiate to find the maximum, leading to

∂

∂kij
log(det K ) = wij/n,

which in combination with the previous result yields

∂

∂K
log(det K ) = K−1.

This can also be derived directly by writing out the determinant,
and it holds for any non-singular square matrix!
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The Wishart distribution is the sampling distribution of the matrix
of sums of squares and products. More precisely:

A random d × d matrix W has a d-dimensional Wishart
distribution with parameter Σ and n degrees of freedom if

W
D
=

n∑
i=1

XνX
>
ν

where Xν ∼ Nd(0,Σ). We then write

W ∼ Wd(n,Σ).

The Wishart is the multivariate analogue to the χ2:

W1(n, σ2) = σ2χ2(n).

If W ∼ Wd(n,Σ) its mean is E(W ) = nΣ.
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If W1 and W2 are independent with Wi ∼ Wd(ni ,Σ), then

W1 + W2 ∼ Wd(n1 + n2,Σ).

If A is an r × d matrix and W ∼ Wd(n,Σ), then

AWA> ∼ Wr (n,AΣA>).

For r = 1 we get that when W ∼ Wd(n,Σ) and λ ∈ Rd ,

λ>Wλ ∼ σ2
λχ2(n),

where σ2
λ = λ>Σλ.
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If W ∼ Wd(n,Σ), where Σ is regular, then W is regular with
probability one if and only if n ≥ d .

When n ≥ d the Wishart distribution has density

fd(w | n,Σ)

= c(d , n)−1(det Σ)−n/2(det w)(n−d−1)/2e− tr(Σ−1w)/2

for w positive definite, and 0 otherwise.

The Wishart constant c(d , n) is

c(d , n) = 2nd/2(2π)d(d−1)/4
d∏

i=1

Γ{(n + 1− i)/2}.
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