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Maximized likelihood
Hypothesis testing

Consider two alternative models M; = {f(x;0),0 € ©1} and

My = {f(x;0),0 € ©,} for a sample

(X=x)=(X1=x1,...,Xn = xpn).

We can apparently address the question of which of these are more
adequate by considering the likelihood ratio

A supg, L(0) _ L(9A1)
supg, L(0) L

~

Note that the quantities L(6;) can be considered as the profile
likelihood L; of the ‘model label' i, considering 6 as a nuisance
parameter.
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Maximized likelihood
Hypothesis testing

If the models are nested in the sense that
©:1 C O,

the likelihood ratio

A =

supe, L(6) _ L(01)

supg, L(0) L(é2)

will always be less than or equal to 1, so will always prefer the
larger model as a description for the data.

There are many reasons this is not adequate, hence A as above is
rarely used as a measure of relative accuracy of two models.
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Maximized likelihood
Hypothesis testing

If the models are nested, one may in principle consider the p-value
p = P{—2log\ > —2log Agps: M1} (1)

i.e. the probability that the ratio A is less that the observed value,
assuming the simpler model is true.

If the p-value is very small, corresponding to A1 being unusually
small, this will be taken as evidence against Mz, and so M, is
favoured.

In contrast, if p is moderate, M; would be favoured over M, as the
simpler explanation of the data.
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Maximized likelihood
Hypothesis testing

This approach has several problems, including:

» it does not make clear sense unless M> has been established
as adequate

> it does not make sense if the models M; are not nested

» when many models M; are considered, it is hard to control the
probability of favouring an incorrect model by chance.
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Bayesian methods Bayesian information criterion

The Bayes factor B in favour of My over M, is

g FxIM) _ Jo, F(x]0, M)m(0) dO
Cf(x[Ma)  fo, F(x |6, Ma)ma(6) dO

ot i

where L; are the integrated likelihoods for the models M;.

When the integrated likelihood is approximated with using
Laplace's method, we get the Bayesian Information Criterion

- ~ d;
L; ~ constant + BIC; = /(6;) — ?I log n.

The prior distributions 7; do not enter in the expression for BIC
which may or may not be seen as an advantage.

Models with a high value of BIC would be preferred over models
with a low value of BIC.
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Bayesian methods Bayesian information criterion

One can get a more accurate approximation of the Bayes factor by

adding terms
1 A d;
—5log { Ji(92)‘} + 5 log(2)

but this correction is not increasing with n, so it is most commonly
ignored.

For the comparison of two models we get

ABIC = /(91)—/(92)+¥|ogn

d—d
= —Iog/\—l—%logn.

Thus, in comparison with straight maximized likelihood, the
simpler model gets preference by entertaining a lower penalty.
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Bayesian methods Bayesian information criterion

In the nested case, if d; < d> and the true value of the parameter
0o € My C My, the deviance —2log A would under suitable
regularity conditions be approximately x%(d> — d;) and the penalty
term will thus dominate for large values of n, so the simpler model
will be correctly chosen.

In this sense, BIC will asymptotically choose the simplest model
which is correct.
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Mallows C,
Prediction risk e

This classic criterion has been developed to choose between
different subsets of variables in linear regression.

Consider the problem of predicting an n-dimensional vector Y with
expectation u from explanatory variables X. The total mean
square prediction error would be

E(IY = Y11%) = E{lln — al%} + E{IlY — E(V)IP},

where ||v||> = 3", v?is the squared error norm.
The second term in this expression is the intrinsic random error
and we can do nothing about it. The first term is the squared
prediction risk

R = E{[|n — Al[*}
and we would wish to choose a model for 1(X) which makes this
risk small.
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Mallows C,
Prediction risk e

If it holds that 4 = X3 and we use a linear model of the form

where S is a subset of d elements of the covariates so
5i(S) = (x7.J € 5)
we thus have the prediction risk
R = E{||X5 = X(5)Ps]|} = do” + B(S)
where B(S) is a bias term
B(S) = llu — us(X)|I* = [1X3 = X(S)5s]?

with B(S) = 0 if the true distribution satisfies 3; = 0 for j ¢ S.
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Mallows C,
Prediction risk e

The corresponding residual sum of squares has expectation
E(RSS) = E{||Y — X(5)5I|*} = (n— d)o® + B(S).

Thus, if we add (2d — n)o? to both sides this equation, we get an
unbiased estimate of the prediction risk from the residual sum of
squares

R(S) = RSS + (2d — n)o?
Mallows C, uses now an unbiased estimate of o2, typically based
on the residual sum of squares for the model with all the variables
included, to estimate the risk so that

RSS
Cp=?+2d—n

Choosing a model S can now be based on this criterion. Note that
this also penalizes models with many parameters.
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Mallows C,
AIC

Prediction risk

Akaike's Information Criterion (AIC) is based on exactly the same
idea as Cp, but it is more general and is not restricted to regression
models.

Akaike suggests assessing the prediction error by the
Kullback-Leibler distance to the true distribution g:

D(g.0) = [ &(x)log f(x.0) dx— [ glx)logg(x) ox = S(g.0)+Hi(g).

The AIC is an approximately unbiased estimate of —2nS(g, QA)
which can be shown to reduce to

AIC; = 1(0;) — d;

SO
AAIC = —log A + (dy — db).

AIC gives typically lower penalty for complexity than BIC.
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