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Consider an integral of form

I =

∫ b

a
e−λg(y)h(y) dy

where

1. λ is large;

2. g(y) is a smooth function which has a local minimum at y∗ in
the interior of the interval (a, b);

3. h(y) is smooth.

The integral can be the moment generating function of the
distribution of g(Y ) when Y has density h, it could be a posterior
expectation of h(Y ), or just an integral.

When λ is large, the contribution to this integral is essentially
entirely originating from a neigbourhood around y∗.
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We formalize this by Taylor expansion of the function g around y∗:

g(y) = g(y∗) + g ′(y∗)(y − y∗) + g ′′(y∗)(y − y∗)2/2 + · · ·
Since y∗ is a local minimum, we have g ′(y∗) = 0, g ′′(y∗) > 0, and
thus

g(y)− g(y∗) = g ′′(y∗)(y − y∗)2/2 + · · ·
If we further approximate h(y) linearly around y∗ we get

I =

∫ b

a
e−λg(y)h(y) dy

≈ e−λg(y∗)h(y∗)

∫ ∞

−∞
e−λg ′′(y∗)(y−y∗)2/2 dy

+e−λg(y∗)h′(y∗)

∫ ∞

−∞
(y − y∗)e−λg ′′(y∗)(y−y∗)2/2 dy

= e−λg(y∗)h(y∗)

√
2π

λg ′′(y∗)
+ 0.
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We have exploited that we know the integral and expectation of a
Gaussian density with concentration g ′′(y∗)λ. The approximation
is typically very accurate and satisfies

I =

∫ b

a
e−λg(y)h(y) dy

= e−λg(y∗)h(y∗)

√
2π

λg ′′(y∗)

{
1 + O

(
1

λ

)}
= A

{
1 + O

(
1

λ

)}
meaning that the relative error

I − A

A

is O(λ−1) and thus remains bounded for λ →∞, even when
multiplied with λ.
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Consider the Gamma function

Γ(x) =

∫ ∞

0
tx−1e−t dt

and recall that for integers λ we have

Γ(λ + 1) = λ!

We get

Γ(λ + 1) =

∫ ∞

0
tλe−t dt.

Substituting y = t/λ and letting g(y) = y − log y we get

Γ(λ + 1) = λ

∫ ∞

0
(λy)λe−λy dy = λλ+1

∫ ∞

0
e−λg(y) dy .
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To use Laplace’s method we differentiate twice and get

g ′(y) = 1− 1/y , g ′′(y) = 1/y2

so that y∗ = 1, g(y∗) = 1 and g ′′(y∗) = 1. Laplace’s method now
yields

Γ(λ + 1) = λλ+1e−λg(y∗)

√
2π

λg ′′(y∗)

{
1 + O

(
1

λ

)}
= λλ+1/2e−λ

√
2π

{
1 + O

(
1

λ

)}
which is known as Stirling’s formula.
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By expanding the function g further, the error of approximation
can be improved for a constant function h so that

Ĩ =

∫ b

a
e−λg(y) dy

= e−λg(y∗)

√
2π

λg ′′(y∗)

{
1 +

5ρ∗3 − 3ρ∗4
24λ

+ O

(
1

λ2

)}
,

where

ρ∗3 =
g (3)(y∗)

{g ′′(y∗)}3/2
, ρ∗4 =

g (4)(y∗)

{g ′′(y∗)}2
.
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In this fashion we can also get Stirling’s improved formula as

Γ(λ + 1) = λλ+1/2e−λ
√

2π

{
1 +

1

12λ
+ O

(
1

λ2

)}
which is remarkably accurate, even for rather small values of λ, as
this table of log Γ(λ + 1) shows:

λ Exact Stirling Improved

2 0.6931472 0.6518048 0.6926268
4 3.1780538 3.1572615 3.1778807
8 10.6046029 10.5941899 10.6045527
16 30.6718601 30.6666508 30.6718456
32 205.1681995 205.1668957 205.1681970
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Alternatively, if the variation of h around y∗ is not neglible, or a
more accurate approximation is desired, one can incorporate h in g
as

g̃λ(y) = g(y)− 1

λ
log h(y)

and get the approximation

I =

∫ b

a
e−λg(y)h(y) dy

=

∫ b

a
e−λg̃λ(y) dy

= e−λg̃λ(ỹλ)

√
2π

λg̃ ′′λ (ỹλ)

{
1 +

5ρ̃3 − 3ρ̃4

24λ
+ O

(
1

λ2

)}
,

where now ỹλ maximizes g̃λ(y), and other quantities are similarly
defined.
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The multivariate case is completely analogous. Here we again write

g(y) = g(y∗)+
∂g(y∗)

∂y
(y−y∗)+(y−y∗)>

∂2g(y∗)

∂y∂y>
(y−y∗)/2+· · ·

and exploit that the vector of partial derivatives ∂g(y∗)
∂y must

vanish, whereby

I =

∫
B

e−λg(y)h(y) dy

= e−λg(y∗)h(y∗)

∫
Rd

e
−λ(y−y∗)> ∂2g(y∗)

∂y∂y>
(y−y∗)/2+...

dy

= e−λg(y∗)h(y∗)(2π/λ)d/2

∣∣∣∣∂2g(y∗)

∂y∂y>

∣∣∣∣−1/2 {
1 + O

(
1

λ

)}
.

Steffen Lauritzen, University of Oxford Laplace’s Method of Integration


	The basic idea
	A simple example
	Further refinement
	The multivariate case

