Laplace's Method of Integration

Steffen Lauritzen, University of Oxford

BS2 Statistical Inference, Lecture 7, Hilary Term 2008
February 8, 2008

Consider an integral of form

$$
I=\int_{a}^{b} e^{-\lambda g(y)} h(y) d y
$$

where

1. λ is large;
2. $g(y)$ is a smooth function which has a local minimum at y^{*} in the interior of the interval (a, b);
3. $h(y)$ is smooth.

The integral can be the moment generating function of the distribution of $g(Y)$ when Y has density h, it could be a posterior expectation of $h(Y)$, or just an integral.
When λ is large, the contribution to this integral is essentially entirely originating from a neigbourhood around y^{*}.

We formalize this by Taylor expansion of the function g around y^{*} :

$$
g(y)=g\left(y^{*}\right)+g^{\prime}\left(y^{*}\right)\left(y-y^{*}\right)+g^{\prime \prime}\left(y^{*}\right)\left(y-y^{*}\right)^{2} / 2+\cdots
$$

Since y^{*} is a local minimum, we have $g^{\prime}\left(y^{*}\right)=0, g^{\prime \prime}\left(y^{*}\right)>0$, and thus

$$
g(y)-g\left(y^{*}\right)=g^{\prime \prime}\left(y^{*}\right)\left(y-y^{*}\right)^{2} / 2+\cdots
$$

If we further approximate $h(y)$ linearly around y^{*} we get

$$
\begin{aligned}
I= & \int_{a}^{b} e^{-\lambda g(y)} h(y) d y \\
\approx & e^{-\lambda g(y *)} h\left(y^{*}\right) \int_{-\infty}^{\infty} e^{-\lambda g^{\prime \prime}\left(y^{*}\right)\left(y-y^{*}\right)^{2} / 2} d y \\
& +e^{-\lambda g(y *)} h^{\prime}\left(y^{*}\right) \int_{-\infty}^{\infty}\left(y-y^{*}\right) e^{-\lambda g^{\prime \prime}\left(y^{*}\right)\left(y-y^{*}\right)^{2} / 2} d y \\
= & e^{-\lambda g(y *)} h\left(y^{*}\right) \sqrt{\frac{2 \pi}{\lambda g^{\prime \prime}\left(y^{*}\right)}}+0 .
\end{aligned}
$$

We have exploited that we know the integral and expectation of a Gaussian density with concentration $g^{\prime \prime}\left(y^{*}\right) \lambda$. The approximation is typically very accurate and satisfies

$$
\begin{aligned}
I & =\int_{a}^{b} e^{-\lambda g(y)} h(y) d y \\
& =e^{-\lambda g(y *)} h\left(y^{*}\right) \sqrt{\frac{2 \pi}{\lambda g^{\prime \prime}\left(y^{*}\right)}}\left\{1+O\left(\frac{1}{\lambda}\right)\right\}=A\left\{1+O\left(\frac{1}{\lambda}\right)\right\}
\end{aligned}
$$

meaning that the relative error

$$
\frac{I-A}{A}
$$

is $O\left(\lambda^{-1}\right)$ and thus remains bounded for $\lambda \rightarrow \infty$, even when multiplied with λ.

Consider the Gamma function

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

and recall that for integers λ we have

$$
\Gamma(\lambda+1)=\lambda!
$$

We get

$$
\Gamma(\lambda+1)=\int_{0}^{\infty} t^{\lambda} e^{-t} d t
$$

Substituting $y=t / \lambda$ and letting $g(y)=y-\log y$ we get

$$
\Gamma(\lambda+1)=\lambda \int_{0}^{\infty}(\lambda y)^{\lambda} e^{-\lambda y} d y=\lambda^{\lambda+1} \int_{0}^{\infty} e^{-\lambda g(y)} d y
$$

To use Laplace's method we differentiate twice and get

$$
g^{\prime}(y)=1-1 / y, \quad g^{\prime \prime}(y)=1 / y^{2}
$$

so that $y^{*}=1, g\left(y^{*}\right)=1$ and $g^{\prime \prime}\left(y^{*}\right)=1$. Laplace's method now yields

$$
\begin{aligned}
\Gamma(\lambda+1) & =\lambda^{\lambda+1} e^{-\lambda g(y *)} \sqrt{\frac{2 \pi}{\lambda g^{\prime \prime}\left(y^{*}\right)}}\left\{1+O\left(\frac{1}{\lambda}\right)\right\} \\
& =\lambda^{\lambda+1 / 2} e^{-\lambda} \sqrt{2 \pi}\left\{1+O\left(\frac{1}{\lambda}\right)\right\}
\end{aligned}
$$

which is known as Stirling's formula.

By expanding the function g further, the error of approximation can be improved for a constant function h so that

$$
\begin{aligned}
\tilde{I} & =\int_{a}^{b} e^{-\lambda g(y)} d y \\
& =e^{-\lambda g(y *)} \sqrt{\frac{2 \pi}{\lambda g^{\prime \prime}\left(y^{*}\right)}}\left\{1+\frac{5 \rho_{3}^{*}-3 \rho_{4}^{*}}{24 \lambda}+O\left(\frac{1}{\lambda^{2}}\right)\right\},
\end{aligned}
$$

where

$$
\rho_{3}^{*}=\frac{g^{(3)}\left(y^{*}\right)}{\left\{g^{\prime \prime}\left(y^{*}\right)\right\}^{3 / 2}}, \quad \rho_{4}^{*}=\frac{g^{(4)}\left(y^{*}\right)}{\left\{g^{\prime \prime}\left(y^{*}\right)\right\}^{2}} .
$$

In this fashion we can also get Stirling's improved formula as

$$
\Gamma(\lambda+1)=\lambda^{\lambda+1 / 2} e^{-\lambda} \sqrt{2 \pi}\left\{1+\frac{1}{12 \lambda}+O\left(\frac{1}{\lambda^{2}}\right)\right\}
$$

which is remarkably accurate, even for rather small values of λ, as this table of $\log \Gamma(\lambda+1)$ shows:

λ	Exact	Stirling	Improved
2	0.6931472	0.6518048	0.6926268
4	3.1780538	3.1572615	3.1778807
8	10.6046029	10.5941899	10.6045527
16	30.6718601	30.6666508	30.6718456
32	205.1681995	205.1668957	205.1681970

Alternatively, if the variation of h around y^{*} is not neglible, or a more accurate approximation is desired, one can incorporate h in g as

$$
\tilde{g}_{\lambda}(y)=g(y)-\frac{1}{\lambda} \log h(y)
$$

and get the approximation

$$
\begin{aligned}
I & =\int_{a}^{b} e^{-\lambda g(y)} h(y) d y \\
& =\int_{a}^{b} e^{-\lambda \tilde{g}_{\lambda}(y)} d y \\
& =e^{-\lambda \tilde{g}_{\lambda}\left(\tilde{y}_{\lambda}\right)} \sqrt{\frac{2 \pi}{\lambda \tilde{g}_{\lambda}^{\prime \prime}\left(\tilde{y}_{\lambda}\right)}}\left\{1+\frac{5 \tilde{\rho}_{3}-3 \tilde{\rho}_{4}}{24 \lambda}+O\left(\frac{1}{\lambda^{2}}\right)\right\},
\end{aligned}
$$

where now \tilde{y}_{λ} maximizes $\tilde{g}_{\lambda}(y)$, and other quantities are similarly defined.

The multivariate case is completely analogous. Here we again write
$g(y)=g\left(y^{*}\right)+\frac{\partial g\left(y^{*}\right)}{\partial y}\left(y-y^{*}\right)+\left(y-y^{*}\right)^{\top} \frac{\partial^{2} g\left(y^{*}\right)}{\partial y \partial y^{\top}}\left(y-y^{*}\right) / 2+\cdots$
and exploit that the vector of partial derivatives $\frac{\partial g\left(y^{*}\right)}{\partial y}$ must vanish, whereby

$$
\begin{aligned}
I & =\int_{B} e^{-\lambda g(y)} h(y) d y \\
& =e^{-\lambda g\left(y^{*}\right)} h\left(y^{*}\right) \int_{\mathcal{R}^{d}} e^{-\lambda\left(y-y^{*}\right)^{\top} \frac{\partial^{2} g\left(y^{*}\right)}{\partial y \partial y^{\top}}\left(y-y^{*}\right) / 2+\ldots} d y \\
& =e^{-\lambda g\left(y^{*}\right)} h\left(y^{*}\right)(2 \pi / \lambda)^{d / 2}\left|\frac{\partial^{2} g\left(y^{*}\right)}{\partial y \partial y^{\top}}\right|^{-1 / 2}\left\{1+O\left(\frac{1}{\lambda}\right)\right\} .
\end{aligned}
$$

