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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Definition
Testing for independence
Hotelling’s T2

If W1 ∼ Wd(f1,Σ) and W2 ∼ Wd(f2,Σ) with f1 ≥ d , then the
distribution of

Λ =
det(W1)

det(W1 + W2)

is Wilks’ distribution and denoted by Λ(d , f1, f2). It holds that

Λ
D
=

d∏
i=1

Bi

where Bi are independent and follow Beta distributions with

Bi ∼ B{(f1 + 1− i)/2, f2/2)}.
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Definition
Testing for independence
Hotelling’s T2

Wilks’ distribution occurs as the likelihood ratio test for
independence. Consider W ∼ Wd(f ,Σ) and the hypothesis that
Σ12 = 0 for a fixed block partitioning of Σ into r × r , r × s and
s × s matrices. The likelihood ratio statistic then becomes

L(K̂11, K̂22)

L(K̂ )
=

{
det(W )

det(W11) det(W22)

}n/2

= Un/2,

where
U ∼ Λ(r , f − s, s) = Λ(s, f − r , r).

It follows that

Λ(d , f1, f2) = Λ(f2, f1 + f2 − d , d).
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Definition
Testing for independence
Hotelling’s T2

This is the equivalent of Student’s t-distribution. Let
Y ∼ Nd(µ, cΣ), W ∼ Wd(f ,Σ) with f ≥ d , and Y ⊥⊥W .

T 2 = f (Y − µ)>W−1(Y − µ)/c

is known as Hotelling’s T 2.

It holds that

1

1 + T 2/f
∼ Λ(d , f , 1) = Λ(1, f − d + 1, d)

and
f − d + 1

fd
T 2 ∼ F (d , f + 1− d)

where F denotes Fisher’s F -distribution.
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Wilks’ distribution and Hotelling’s T2

Conjugate Bayesian analysis

Inverse Wishart distribution
Posterior updating
Bayes factor for independence

Recall that the Wishart density has the form

fd(w | f ,Σ) ∝ (det w)(f−d−1)/2e− tr(Σ−1w)/2.

Since the likelihood function for Σ is

L(K ) = (det K )f /2e− tr(KW )/2,

a conjugate family of distributions for K is given by

π(K ; a,Ψ) ∝ (det K )a/2−1e− tr(KΨ)/2,

which thus specifies a Wishart distribution for the concentration
matrix.
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Conjugate Bayesian analysis

Inverse Wishart distribution
Posterior updating
Bayes factor for independence

We then say that Σ follows an inverse Wishart distribution if
K = Σ−1 follows a Wishart distribution, formally expressed as

Σ ∼ IWd(δ,Ψ) ⇐⇒ K = Σ−1 ∼ Wd(δ + d − 1,Ψ−1),

i.e. if the density of K has the form

f (K | δ,Ψ) ∝ (det K )δ/2−1e− tr(ΨK)/2.

We repeat the expression for the standard Wishart density:

fd(w | f ,Σ) ∝ (det w)(f−d−1)/2e− tr(Σ−1w)/2.

It follows that the family of inverse Wishart distributions is a
conjugate family for Σ.
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Conjugate Bayesian analysis

Inverse Wishart distribution
Posterior updating
Bayes factor for independence

If the prior distribution of Σ is IWd(δ,Ψ) and W |Σ ∼ Wd(f ,Σ),
we get for the posterior density of K that

f (K | δ,Ψ,W ) ∝ (det K )f /2e− tr(KW )/2

×(det K )δ/2−1e− tr(ΨK)/2

= (det K )(f +δ)/2−1e− tr{(Ψ+W )K}/2,

and hence the posterior distribution is simply
IWd(δ + f ,Ψ + W ) = IWd(δ∗,Ψ∗).

We can thus interpret the parameter δ as a prior equivalent sample
size and Ψ as the value of a matrix of sums and squares and
products from a previous sample.
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Inverse Wishart distribution
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Bayes factor for independence

We need the full form of the Wishart density for K , as constants
may become important and recall that

fd(K | δ,Ψ)

= q(d , δ)−1(det Ψ)(δ+d−1)/2(det K )δ/2−1e− tr(ΨK)/2

The constant q(d , δ) is

q(d , δ) = 2(δ+d−1)d/2(2π)d(d−1)/4
d∏

i=1

Γ{(δ + d − i)/2}.
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Inverse Wishart distribution
Posterior updating
Bayes factor for independence

Consider now alternative models M1 with Σ arbitrary and M2 with
Σ of block diagonal form:

Σ =

(
Σ11 0
0 Σ22

)
.

If the associated prior distributions are for M1 that
Σ ∼ IWd(δ, Id) and for M2 that Σ11 ∼ IW r (δ, Ir ),
Σ22 ∼ IWs(δ, Is), we can now calculate the Bayes factor.
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