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A generalized linear model is based on a family the form

f (y ; θ, φ) = b(y , φ)e{yθ−c(θ)}/d(φ). (1)

For φ fixed and θ varying over all possible values, this is a
one-dimensional exponential family with canonical statistic
t(y) = y , canonical parameter θ∗ = θ/d(φ), and cumulant
generating function

κ{θ∗} = κ{θ/d(φ)} = c(θ)/d(φ) = log

∫
b(y , φ)eyθ∗ dy , (2)

so

E(Y ) =
∂

∂θ∗
κ{θ/d(φ)} = d(φ)

∂

∂θ
κ{θ/d(φ)} = c ′(θ)

and

V(Y ) =
∂2

∂θ∗2
κ{θ/d(φ)} = d(φ)2

∂2

∂θ2
κ{θ/d(φ)} = c ′′(θ)d(φ).
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An exponential families with the canonical statistic t(y) = y is also
known as a natural exponential family (NEF), but terminology
varies among authors so beware. Clearly, one can either consider
the family (1) as an exponential family with canonical statistic
t(y) = y and canonical parameter θ∗ = θ/d(φ), or let
t∗(y) = y/d(φ) with parameter θ.

For varying φ, the situation is generally much more complex.
Sometimes it is an exponential family, sometimes not. Sometimes
it is not possible to have d(φ) varying independently of θ at all,
e.g. in the Poisson case.

When d(φ) is varying, it is a strong restriction on the function
b(y , φ) to assume that the cumulant generating function (2) has
the form κ(θ/φ) = c(θ)/d(φ).
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Since V(Y ) = d(φ)c ′′(θ) we have c ′′(θ) > 0 and hence the
function c ′(θ) is strictly increasing in θ. We can therefore
parametrize the family with its mean µ and define θ(µ) by the
relation

µ = E(Y ) = c ′(θ), θ(µ) = c ′
−1

(µ)

and define the variance function

v(µ) = c ′′{θ(µ)}

so now
V(Y ) = d(φ)v(µ)

and we can readily think of φ as a dispersion parameter.
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An important fact is that the variance functions identifies the
family in the sense that two families of densities which both have
the form (1) and have the same variance function v(µ), must be
identical.

Common variance functions for standard families are

Normal Poisson Binomial Gamma Inverse Gaussian

1 µ µ(1− µ) µ2 µ3

Not all functions v(µ) can occur as variance functions.

For example, a function of the form v(µ) = µα is a variance
function for a NEF if α ≤ 0 or 1 ≤ α < ∞, but not if 0 < α < 1.
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Generalized linear models describe independent samples of the
form Y = (Y1, . . . ,Yn) where each Yi is a one-dimensional
response to covariates xi = (xi1, . . . , xip) having distribution of the
form (1), with expectations µi and dispersions di (φ).

For simplicity we assume di (φ) = φ although di (φ) = φ/wi with wi

being a known weight may be appropriate in some cases. Formally
we assume φ known for the moment.

The saturated model makes no further restriction on the
parameters µi and the maximum likelihood estimator under this
model is therefore given as

µ̂ = Y ,

provided the base exponential family is regular.
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More generally, we restrict the vector of expectations
µ = (µ1, . . . , µn)

> through a linear predictor ηi = xiβ written in
matrix form as

η = Xβ

where xi are the rows of X and β = (β1, . . . , βp)
> is a vector of

unknown parameters, and a link function g relating the linear
predictor to the mean as

ηi = g(µi ).

Here care should be taken in the choice of link function, as the
parameter space for β must be restricted so that this equation
makes sense.

A special role is played by the link function g(µ) = θ(µ) = c ′−1(µ)
which is known as canonical link.
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If we consider the likelihood function we get

l(β) = log L(β) =
∑

i

{yiθi − c(θi )}/φ = {y>θ −
∑

i

c(θi )}/φ,

where now

θi = θ(µi ) = θ{g−1(ηi )} = θ{g−1(xiβ)}.

If g is the canonical link function, we have g(µ) = θ(µ) and hence
θi = xiβ. This then yields

l(β) = {y>Xβ −
∑

i

c(xiβ)}/φ = {(X>y)>β −
∑

i

c(xiβ)}/φ

and hence the family of joint distributions is a linear and canonical
exponential family with canonical statistic t(y) = X>y and β/φ as
the canonical parameter.
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Thus, the likelihood equation for a fixed φ again equates the
expectation of the sufficient statistic to the observed value.
Interpreting vector functions componentwise this has the simple
form

X>µ(β) = X>y

or equivalently
X>{y − µ(β)} = 0

expressing that the residual y − µ(β) is orthogonal to all columns
of X .

From general theory of exponential families it is known that there
is at most one solution β̂ to this equation, despite the fact that the
equation typically is non-linear in β, as µ(β) = g−1(Xβ).
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For a general link function, the score statistic can be written in the
form

S(β) = Z>W {y − µ(β)}/φ

where Z is a matrix with elements

Z (β)ij =
∂ηi

∂βj

and W (β) is a diagonal matrix with diagonal elements equal to
Wii = 1/v{µi (β)}.
Fisher’s method of scoring leads to a iterative weighted least
squares regression procedure (IRLS) for solving these, which now
can be used for all generalized linear models, only the calculation
of the matrix Z and the weights W being special to the model
considered, depending in a simple way on the link and variance
functions. Details are omitted here.
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The goodness of fit of a specific generalized linear model is
assessed in the usual way using the deviance

D(µ̂; y) = −2{l(µ̂; y)− l(y ; y)}
= −2{l1(µ̂; y)− l1(y ; y)}/φ = D1(µ̂; y)/φ,

where l(y ; y) is the maximized log-likelihood in the saturated
model and l(µ̂; y) is the maximized log-likelihood in the model
considered.

The symbol l1 is used for the log-likelihood in the case φ = 1 and
similarly for D1.
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Under reasonable assumption on the behaviour of the covariates xi ,
D can be shown to be asymptotically distributed as a
χ2-distribution with degrees of freedom n − p where X is assumed
to have full rank p.

In the situation, where the dispersion parameter φ is considered
unknown it is therefore customary to use the estimator

φ̃ =
D1(µ̂,Y )

n − p
.

Note that this is not a maximum likelihood estimator, and there
are good reasons for not using the MLE:
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Firstly, the problem of finding the MLE of φ could be
computationally very difficult in general, and the computational
problem very different for different variance functions.

Secondly, there would be a problem with the nuisance parameter β
distorting the estimate, in particular if the dimension p of β is
large.

The estimate for φ used is thus based on ‘approximate marginal
likelihood’, estimating φ on the basis of the approximate
χ2-distribution for the deviance. The MLE of µ is the same for all
values of φ and is therefore appropriate as is.
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