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A d-dimensional random vector X = (X1, . . . ,Xd) is has a
multivariate Gaussian distribution or normal distribution on Rd if
there is a vector ξ ∈ Rd and a d × d matrix Σ such that

λ>X ∼ N (λ>ξ, λ>Σλ) for all λ ∈ Rd . (1)

We then write X ∼ Nd(ξ, Σ).

Taking λ = ei or λ = ei + ej where ei is the unit vector with i-th
coordinate 1 and the remaining equal to zero yields:

Xi ∼ N (ξi , σii ), Cov(Xi ,Xj) = σij .

Hence ξ is the mean vector and Σ the covariance matrix of the
distribution.
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The definition (1) makes sense if and only if λ>Σλ ≥ 0, i.e. if Σ is
positive semidefinite. Note that we have allowed distributions with
variance zero.

The multivariate moment generating function of X can be
calculated using the relation (1) as

md(λ) = E{eλ>X} = eλ>ξ+λ>Σλ/2

where we have used that the univariate moment generating
function for N (µ, σ2) is

m1(t) = etµ+σ2t2/2

and let t = 1, µ = λ>ξ, and σ2 = λ>Σλ.

In particular this means that a multivariate Gaussian distribution is
determined by its mean vector and covariance matrix.
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Assume X> = (X1,X2,X3) with Xi independent and
Xi ∼ N (ξi , σ

2
i ). Then

λ>X = λ1X1 + λ2X2 + λ3X3 ∼ N (µ, τ2)

with

µ = λ>ξ = λ1ξ1 + λ2ξ2 + λ3ξ3, τ2 = λ2
1σ

2
1 + λ2

2σ
2
2 + λ2

3σ
2
3.

Hence X ∼ N3(ξ,Σ) with ξ> = (ξ1, ξ2, ξ3) and

Σ =

 σ2
1 0 0
0 σ2

2 0
0 0 σ2

3

 .
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If Σ is positive definite, i.e. if λ>Σλ > 0 for λ 6= 0, the distribution
has density on Rd

f (x | ξ,Σ) = (2π)−d/2(det K )1/2e−(x−ξ)>K(x−ξ)/2, (2)

where K = Σ−1 is the concentration matrix of the distribution.
We then also say that Σ is regular.

If X1, . . . ,Xd are independent and Xi ∼ N (ξi , σ
2
i ) their joint

density has the form (2) with Σ = diag(σ2
i ) and

K = Σ−1 = diag(1/σ2
i ).

Hence vectors of independent Gaussians are multivariate Gaussian.
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In the bivariate case it is traditional to write

Σ =

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)
,

with ρ being the correlation between X1 and X2. Then

det(Σ) = σ2
1σ

2
2(1− ρ2) = det(K )−1

and

K =
1

σ2
1σ

2
2(1− ρ2)

(
σ2

2 −σ1σ2ρ
−σ1σ2ρ σ2

1

)
.
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Thus the density becomes

f (x | ξ, Σ) =
1

2πσ1σ2

√
(1− ρ2)

×e
− 1

2(1−ρ2)

{
(x1−ξ1)2

σ2
1

−2ρ
(x1−ξ1)(x2−ξ2)

σ1σ2
+

(x2−ξ2)2

σ2
2

}
.

The contours of this density are ellipses and the corresponding
density is bell-shaped with maximum in (ξ1, ξ2).
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The marginal distributions of a vector X can all be Gaussian
without the joint being multivariate Gaussian:

For example, let X1 ∼ N (0, 1), and define X2 as

X2 =

{
X1 if |X1| > c
−X1 otherwise.

Then, using the symmetry of the univariate Gausssian distribution,
X2 is also distributed as N (0, 1).
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However, the joint distribution is not Gaussian unless c = 0 since,
for example, Y = X1 + X2 satisfies

P(Y = 0) = P(X2 = −X1) = P(|X1| ≤ c) = Φ(c)− Φ(−c).

Note that for c = 0, the correlation ρ between X1 and X2 is 1
whereas for c = ∞, ρ = −1.

It follows that there is a value of c so that X1 and X2 are
uncorrelated, and still not jointly Gaussian.
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Adding two independent Gaussians yields a Gaussian:

If X1 ∼ Nd(ξ1,Σ1) and X2 ∼ Nd(ξ2,Σ2) and X1⊥⊥X2

X1 + X2 ∼ Nd(ξ1 + ξ2,Σ1 + Σ2).

To see this, just note that

λ>(X1 + X2) = λ>X1 + λ>X2

and use the univariate addition property.
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Linear transformations preserve multivariate normality:

If A is an r × d matrix, b ∈ Rr and X ∼ Nd(ξ,Σ), then

Y = AX + b ∼ Nr (Aξ + b,AΣA>).

Again, just write

γ>Y = γ>(AX + b) = (A>γ)>X + γ>b

and use the corresponding univariate result.
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Partition X into into X1 and X2, where X1 ∈ Rr and X2 ∈ Rs with
r + s = d .
Partition mean vector, concentration and covariance matrix
accordingly as

ξ =

(
ξ1

ξ2

)
, K =

(
K11 K12

K21 K22

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
so that Σ11 is r × r and so on. Then, if X ∼ Nd(ξ, Σ)

X2 ∼ Ns(ξ2,Σ22).

This follows simply from the previous fact using the matrix

A = (0sr Is) .

where 0sr is an s × r matrix of zeros and Is is the s × s identity
matrix.
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If Σ22 is regular, it further holds that

X1 |X2 = x2 ∼ Nr (ξ1|2,Σ1|2),

where

ξ1|2 = ξ1 + Σ12Σ
−1
22 (x2 − ξ2) and Σ1|2 = Σ11 − Σ12Σ

−1
22 Σ21.

In particular, if Σ12 = 0 if and only if X1 and X2 are independent.
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From the matrix identities

K−1
11 = Σ11 − Σ12Σ

−1
22 Σ21 = Σ1 | 2 (3)

and
K−1

11 K12 = −Σ12Σ
−1
22 , (4)

it follows that then the conditional expectation and concentrations
also can be calculated as

ξ1|2 = ξ1 − K−1
11 K12(x2 − ξ2) and K1|2 = K11.

Note that the marginal covariance is simply expressed in terms of
Σ where as the conditional concentration is simply expressed in
terms of K.
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Consider N3(0,Σ) with covariance matrix

Σ =

 1 1 1
1 2 1
1 1 2

 .

The concentration matrix is

K = Σ−1 =

 3 −1 −1
−1 1 0
−1 0 1

 .
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The marginal distribution of (X2,X3) has covariance and
concentration matrix

Σ23 =

(
2 1
1 2

)
, (Σ23)

−1 =
1

3

(
2 −1
−1 2

)
.

The conditional distribution of (X1,X2) given X3 has concentration
and covariance matrix

K12 =

(
3 −1
−1 1

)
, Σ12|3 = (K12)

−1 =
1

2

(
1 1
1 3

)
.

Similarly, V(X1 |X2,X3) = 1/k11 = 1/3, etc.
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