
Edgeworth expansion
Saddle-point expansion

MLE in exponential family

Maximum likelihood asymptotics

Steffen Lauritzen, University of Oxford

BS2 Statistical Inference, Lecture 11, Hilary Term 2008

June 17, 2008

Steffen Lauritzen, University of Oxford Maximum likelihood asymptotics



Edgeworth expansion
Saddle-point expansion

MLE in exponential family

Cumulants
Basic expansion

Let X1, . . . ,Xn be independent and identically distributed with
density f and moment generating function M(t) = EetX . The
cumulant generating function of X is

K (t) = log M(t) =
∞∑

r=1

κr

r !
tr ,

and the coefficient

κr =
∂r K (0)

∂r t

is the cumulant of order r . The first two cumulants are the mean
and variance

κ1 = µ = E(X ), κ2 = σ2 = V(X ).
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If X and Y are independent random variable, their cumulants
satisfy

κr (aX + bY ) = arκr (X ) + brκr (Y ).

The standardized cumulants

ρr = κr/κ
r/2
2 , r = 3, 4, . . .

are thus invariant under translations and scaling

ρr (aX + b) = ρr

and therefore determine the shape of the density.

In the normal distribution, κr = 0 for r > 2 and cumulants ρr for
r > 2 therefore indicate departures from normality.

The third cumulant ρ3 is is known as the skewness, and the fourth
cumulant ρ4 as the kurtosis of the distribution.
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F. Y. Edgeworth (1845-1926), Professor of Political Economy at
Oxford, showed that the density of

S∗n =

∑n
1 Xi − nµ

σ
√

n

could be approximated as

fS∗n (x) ≈ φ(x)

{
1 +

ρ3H3(x)

6
√

n
+

3ρ4H4(x) + ρ2
3H6(x)

72n

}
+ O(n−3/2)

where φ is standard normal density and the omitted terms are
O(n−3/2) and Hr are Hermite polynomials

Hr (x) = (−1)rφ(r)(x)/φ(x).

For example, H3(x) = x3 − 3x , H4(x) = x4 − 6x2 + 3,
H6(x) = x16− 15x4 + 45x2 − 15.
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In terms of the original variable S we get

fSn(s) =
e−x2/2

σ
√

2πn

{
1 +

ρ3H3(x)

6
√

n
+

3ρ4H4(x) + ρ2
3H6(x)

72n

}
+O(n−3/2),

where x = (s − nµ)/(σ
√

n).

Since H3(0) = 0 this is particularly accurate when s is close to nµ,
as the first correction term then disappears.

If we wish a similar accuracy for other values of s we use the idea
of tilting the distribution by shifting the log-density with a linear
term, as we shall see next.
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Associate an exponential family of densities with the originial
density f as

f (x ; γ) = f (x)exγ−K(γ),

where K is the cumulant generating function of f . Clearly,
f (x ; 0) = f (x). We say that f (x ; γ) is obtained by tilting f by γ.

If Xi have density f (x ; γ), the sum Sn has density

fSn(s; γ) = fSn(s)esγ−nK(γ),

implying that
fSn(s) = enK(γ)−sγfSn(s; γ).

Since this equation holds for all γ we can now choose γ freely to
suit our purpose.
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If we use an Edgeworth expansion to approximate fSn(s; γ) we can
thus choose γ so that the expectation Eγ(Sn) = s.

Since the mean of Sn in the tilted distribution is nK ′(γ) we should
choose nK ′(γ̂) = s. As the variance of Sn in the tilted distribution
is nK ′′(γ), the resulting saddle-point approximation is

fSn(s) ≈ enK(γ̂)−sγ̂ 1

{2πnK ′′(γ̂)}−1/2
,

which can be extremely accurate.

Note that the Edgeworth approximation uses a normal
approximation around the mean of the distribution whereas
Laplace’s method uses its mode. The tilting technique can be
useful in both cases.
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Use this approximation for a natural exponential family with
canonical parameter θ, i.e. with density

f (x ; θ) = b(x)eθx−c(θ)

then K (t) = c(θ + t)− c(θ), K ′(t) = c ′(θ + t) and thus when

nK ′(γ̂) = nc ′(θ + γ̂) = s

we have thatγ̂ = θ̂ − θ, where θ̂ is the MLE, yielding

fSn(s; θ) ≈ en{K(θ̂)−K(θ)}−s(θ̂−θ)} 1

{2πnK ′′(θ̂)}−1/2
∝ L(θ)

L(θ̂)
|j(θ̂)|−1/2.
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Since nK ′(θ̂) = s we have

∂θ̂

∂s
=

1

nK ′′(θ̂)
=

1

nj(θ̂)

so a change of variables leads to the following approximate formula
for the density of the MLE

f (θ̂; θ) ≈∝ L(θ)

L(θ̂)
|j(θ̂)|1/2.
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Similar methods can be used to show that, in wide generality, if A
is ancillary so that (θ̂,A) is minimal sufficient, then approximately,
and quite often exactly,

f (θ̂ |A = a; θ) ≈∝ L(θ)

L(θ̂)
|j(θ̂)|1/2,

which is known as Barndorff–Nielsen’s formula. Note that
normalization constant may depend on θ and a.

Note similarity to the approximate Bayesian posterior:

π∗(θ) ≈∝ L(θ)

L(θ̂)

∣∣∣j(θ̂)
∣∣∣1/2

where we have ignored the contribution π(θ)/π(θ̂) from the prior.
Only the interpretations are different!
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