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For large λ we have the approximation

I =

∫ b

a
e−λg(y)h(y) dy = e−λg(y∗)h(y∗)

√
2π

λg ′′(y∗)

{
1 + O

(
1

λ

)}
A more accurate approximation is

I = e−λg̃λ(ỹλ)

√
2π

λg̃ ′′λ (ỹλ)

{
1 +

5ρ̃3 − 3ρ̃4

24λ
+ O

(
1

λ2

)}
,

where ỹλ maximizes g̃λ(y) and

ρ̃3 =
g (3)(ỹλ)

{g ′′(ỹλ)}3/2
, ρ̃4 =

g (4)(ỹλ)

{g ′′(ỹλ)}2
.
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In the multivariate case we have

I =

∫
B

e−λg(y)h(y) dy

= e−λg(y∗)h(y∗)

∫
Rd

e
−λ(y−y∗)> ∂2g(y∗)

∂y∂y>
(y−y∗)/2+...

dy

= e−λg(y∗)h(y∗)(2π/λ)d/2

∣∣∣∣∂2g(y∗)

∂y∂y>

∣∣∣∣−1/2 {
1 + O

(
1

λ

)}
and additional accuracy up to O(λ−2) can be obtained using
derivatives of third and fourth order as in the univariate case.
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We consider a standard asymptotic setup, involving X1, . . . ,Xn, . . .
random variables which, conditional on a d-dimensional parameter
θ are independent and identically distributed with density f (x | θ),
and π(θ) is the prior distribution of the parameter θ.

The posterior density is determined as

π∗(θ) = f (θ | x) ∝ e l(θ)π(θ),

where l(θ) = log L(θ) is the log-likelihood function. Letting

l̄n(θ) = l(θ)/n =
1

n

n∑
1

log f (Xi | θ),

the law of large numbers yields that for n →∞,

l̄n(θ) → Eθ{log f (X | θ)} = −H(θ),

where H(θ) is the entropy of the density f (· | θ).
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Thus the variation in the posterior density

π∗(θ) ∝ enl̄n(θ)π(θ)

will for sufficiently large n be dominated by the contribution from
the likelihoood funtion. Expanding l(θ) around the maximum
likelihood estimate θ̂ yields

π∗(θ) ∝ enl̄n(θ̂)π(θ̂)e−(θ−θ̂)>jn(θ̂)(θ−θ̂)/2 ∝ e−(θ−θ̂)>jn(θ̂)(θ−θ̂)/2

where jn(θ̂) = nj(θ̂) is the observed information matrix, so,
approximately for large n, the posterior distribution of θ is

θ ∼ Nd{θ̂, jn(θ̂)−1) = Nd(θ̂, j(θ̂)−1/n}.

Note this expression makes perfect sense, as θ̂ is not random in the
posterior distribution.
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A more accurate approximation is obtained by expanding around
the posterior mode θ∗π to get

π∗(θ) ∝ e−(θ−θ∗π)>jn(θ∗π)(θ−θ∗π)/2

yielding, approximately for large n, the posterior distribution of θ as

θ ∼ Nd{θ∗π, jn(θ
∗
π)−1) = Nd(θ̂, j(θ∗π)−1/n}.

Note both differences and similarities to the analogous frequentist
results

θ̂ ∼ Nd{θ, in(θ)−1} θ̂ ∼ Nd{θ, in(θ̂)−1}, θ̂ ∼ Nd{θ, jn(θ̂)−1},

where the two latter needs appropriate interpretation to make
perfect sense.
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We can obtain an accurate approximation of the posterior
distribution by applying Laplace’s method to the normalization
constant:

π∗(θ) =
exp{l(θ)}π(θ)∫

Θ exp{l(θ)}π(θ) dθ

= (2π)−d/2 exp{l(θ)− l(θ̂)}π(θ)

π(θ̂)

∣∣∣nj(θ̂)
∣∣∣1/2

{1 + O(n−1)}

= (2π/n)−d/2 exp{l(θ)− l(θ̂)}π(θ)

π(θ̂)

∣∣∣j(θ̂)∣∣∣1/2
{1 + O(n−1)}.

Note in particular the expression for the normalization constant∫
Θ

f (x | θ)π(θ) dθ = (2π/n)d/2L(θ̂)π(θ̂)
∣∣∣j(θ̂)∣∣∣−1/2

{1 + O(n−1)}.
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Recall that for competing models M1 and M2 with parameters
θ1 ∈ Θ1 ∈ Rd1 and θ2 ∈ Θ2 ∈ Rd2 and prior distributions π1, π2,
the Bayes factor B in favour of M1 over M2 is

B =
f (x1, . . . , xn |M1)

f (x1, . . . , xn |M2)
=

∫
Θ1

f (x | θ1,M1)π1(θ1) dθ1∫
Θ2

f (x | θ2,M2)π2(θ2) dθ2
.

Using the approximate expression obtained for the normalization
constants, we get

B = (2π)(d1−d2)/2n(d2−d1)/2 L(θ̂1)π(θ̂1)

L(θ̂2)π(θ̂2)

∣∣∣j2(θ̂2)
∣∣∣1/2

∣∣∣j1(θ̂1)
∣∣∣1/2

{1 + O(n−1)}.
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To study the asymptotic behaviour of the Bayes factor we take
logarithms and collect terms of similar order to get

log B = n{̄ln(θ̂1)− l̄n(θ̂2)}+
d2 − d1

2
log n + log{π(θ̂1)/π(θ̂2)}

−1

2
log

{∣∣∣j1(θ̂2)
∣∣∣ /

∣∣∣j1(θ̂1)
∣∣∣}− d2 − d1

2
log(2π) + O(n−1).

The dominating terms are those on the first line, as all other terms
are of smaller order for n →∞. Ignoring the latter we get

log B ≈ {l(θ̂1)− l(θ̂2)} −
d1 − d2

2
log n.

The right-hand side is the Bayesian Information Criterion (BIC). It
reflects that, for large n, the Bayes factor will favour the model
with highest maximized likelihood (the first term), but will also
penalize the model having the largest number of parameters.
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